Vol. 97
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-09
Analysis of Scattering from Arbitrary Configuration of Cylindrical Objects Using Hybrid Finite-Difference Mode-Matching Method
By
Progress In Electromagnetics Research, Vol. 97, 105-127, 2009
Abstract
This paper presents a new hybrid finite-difference frequency domain --- mode-matching method (FDFD-MM) for the analysis of electromagnetic wave scattering from configuration of metallic or dielectric cylindrical posts with arbitrary cross-section. In our approach each scatterer is treated as an effective circular cylinder represented by impedance matrix defined in its local coordinate system. In order to obtain the scattering parameters of arbitrary configuration of objects in global coordinate system an analytical iterative scattering procedure (ISP) is applied. This work is an extension of our previously published results, where our consideration were limited to two dimensional (2D) problems with TM excitation. In this paper we extended our analysis to two-and-a-half dimensional (2.5D) problems. The accuracy of the proposed method is presented and discussed. To verify our approach some numerical examples are presented. The obtained results are compared with the results published in literature and the ones obtained from own measurements and commercial software.
Citation
Adam Kusiek, and Jerzy Mazur, "Analysis of Scattering from Arbitrary Configuration of Cylindrical Objects Using Hybrid Finite-Difference Mode-Matching Method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804
References

1. Satoh, T., S. Endo, N. Matsunaka, S. Betsudan, T. Katagi, and T. Ebisui, "Sidelobe level reduction by improvement of strut shape," IEEE Trans. on AP, Vol. 32, 698-705, Jul. 1984.

2. Kildal, P.-S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. on AP, Vol. 44, 1509-1520, Nov. 1996.

3. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Trans. on AP, Vol. 52, 2603-2611, Oct. 2004.

4. Toyama, H. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of composite circular cylinder with internal cylindrical scatterers," Progress In Electromagnetics Research, PIER 52, 321-333, 2005.
doi:10.2528/PIER04100101

5. Gimeno, B., J. L. Cruz, E. A. Navarro, and V. Such, "A polarizer rotator system for three-dimensional oblique incidence," IEEE Trans. on AP, Vol. 42, No. 7, 912-919, Jul. 1994.

6. Lech, R., M. Mazur, and J. Mazur, "Analysis and design of a polarizer rotator system," IEEE Trans. on AP, Vol. 56, No. 3, 844-847, Mar. 2008.

7. Coccioli, R., A. Morini, G. Pelosi, and T. Rozzi, "Design of tolerance-corrected filters employing half-cylinder posts," IEEE Trans. on MTT, Vol. 46, No. 1, 116-118, Jan. 1998.
doi:10.1109/22.654930

8. Bachiller, C., H. Esteban, V. E. Boria, J. V. Morro, L. J. Rogla, M. Taroncher, and A. Belenguer, "Efficient CAD tool of direct-coupled-cavities filters with dielectric resonators," IEEE Antennas and Propagation Society International Symposium 2005, Vol. 1B, 578-581, 2005.
doi:10.1109/APS.2005.1551624

9. Shen, T., K. A. Zaki, and C. Wang, "Tunable dielectric resonators with dielectric tuning disks," IEEE Trans. on MTT, Vol. 48, No. 12, 2439-2445, Dec. 2000.
doi:10.1109/22.898995

10. Dittloff, J., F. Arndt, and D. Grauerholz, "Optimum design of waveguide E-plane stub-loaded phase shifters," IEEE Trans. on MTT, Vol. 36, No. 3, 582-587, Mar. 1988.
doi:10.1109/22.3552

11. Gaiewski, W. R., L. P. Dunleavy, and A. J. Castro, "Analysis and measurement of mode polarizers in square waveguide," IEEE Trans. on MTT, Vol. 45, No. 6, 997-1000, Jun. 1997.
doi:10.1109/22.588616

12. Sabbagh, M. E. and K. Zaki, "Modeling of rectangular waveguide junctions containing cylindrical posts," Progress In Electromagnetics Research, 299-331, PIER 33, 2001.

13. Arena, D., M. Ludovico, G. Manara, and A. Monorchio, "Analysis of waveguide discontinuities using edge elements in a hybrid mode matching/finite elements approach," IEEE MWCL, Vol. 11, No. 9, 379-381, Sep. 2001.

14. Crino, V., M. Mongiardo, and C. Tomassoni, "Comparison between line and surface integral formulations of the hybrid mode-matching/two-dimensional finite element method: Research articles," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 17, No. 6, 575-592, Nov. 2004.
doi:10.1002/jnm.558

15. Catina, V., F. Arndt, and J. Brandt, "Hybrid surface integral-equation/mode-matching method for the analysis of dielectric loaded waveguide filters of arbitrary shape," IEEE Trans. on MTT, Vol. 53, No. 11, 3562-3567, Nov. 2005.
doi:10.1109/TMTT.2005.857343

16. Abd-Alhameed, R. A., P. S. Excell, M. A. Mangoud, and J. A. Vaul, "Computation of radiated and scattered field using separate frequency domain moment-method regions and frequencyv domain MoM-FDTD hybrid methods," IEE Antennas and Propagation 1999 National Conference, Vol. 30, Mar./Apr. 1999.

17. Rogier, H., "A new hybrid FDTD-BIE approach to model electromagnetic scattering problems," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 3, 138-140, Mar. 1998.
doi:10.1109/75.661141

18. Xu, F. and W. Hong, "Analysis of two dimensions sparse multicylinder scattering problem using DD-FDTD method," IEEE Trans. on AP, Vol. 52, No. 10, 2612-2617, Oct. 2004.

19. Sharkawy, M. A., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. on AP, Vol. 54, No. 2, 666-673, Feb. 2006.

20. Esteban, H., S. Cogollos, V. E. Boria, A. S. Blas, and M. Ferrando, "A new hybrid mode-matching/numerical method for the analysis of arbitrarily shaped inductive obstacles and discontinuities in rectangular waveguides," IEEE Trans. on MTT, Vol. 50, No. 4, 1219-1224, Apr. 2002.
doi:10.1109/22.993428

21. Arndt, F., V. Catina, and J. Brandt, "Efficient hybrid MM/MoM technique for the CAD of circular combline filters with resonators of more general shape," IEEE Microwave Symposium Digest, Vol. 3, 1407-1410, 2004.

22. Polewski, M. and J. Mazur, "Scattering by an array of conducting lossy dielectric, ferrite and pseudochiral cylinders," Progress In Electromagnetics Research, PIER 38, 283-310, 2002.

23. Polewski, M., R. Lech, and J. Mazur, "Rigorous modal analysis of structures containing inhomogeneous dielectric cylinders," IEEE Trans. on MTT, Vol. 52, No. 5, 1508-1516, May 2004.
doi:10.1109/TMTT.2004.827030

24. Kusiek, A., R. Lech, and J. Mazur, "A new hybrid method for analysis of scattering from arbitrary configuration of cylindrical objects," IEEE Trans. on AP, Vol. 56, No. 6, 1725-1733, Jun. 2008.

25. Quick Wave 3D, QWED, , Warsaw, Poland, 2006.

26. Taflove, A., "The Finite-difference Time-domain Method," Artech House, 1995.

27. Dey, S. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Trans. on MTT, Vol. 47, No. 9, 1737-1739, Sep. 1999.
doi:10.1109/22.788616

28. Kaneda, N., B. Housmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Trans. on MTT, Vol. 45, No. 9, 1645-1649, Sep. 1997.
doi:10.1109/22.622937

29. Kowalczyk, P., M. Wiktor, and M. Mrozowski, "Efficient finite difference analysis of microstructured optical fibers," Opt. Express, Vol. 13, No. 25, 10349-10359, Dec. 2005.
doi:10.1364/OPEX.13.010349

30. Dahlquist, G. and A. Bjrck, Numerical Methods, Prentice Hall, 1974.

31. Kusiek, A., P. Kowalczyk, and J. Mazur, "Analysis of scattering from arbitrary configuration of elliptical obstacles using T-matrix representation," IET Microwaves, Antennas and Propagation, Vol. 2, No. 10, 434-441, Aug. 2008.
doi:10.1049/iet-map:20070201

32. Tsalamengas, J. L., I. O. Vardiambasis, and J. G. Fikioris, "Plane-wave scattering by strip-loaded circular dielectric cylinders in the case of oblique incidence and arbitrary polarization," IEEE Trans. on AP, Vol. 43, No. 10, 1099-1108, Oct. 1995.