Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-02
Influence of Noise on Subwavelength Imaging of Two Close Scatterers Using Time Reversal Method: Theory and Experiments
By
Progress In Electromagnetics Research, Vol. 98, 333-358, 2009
Abstract
Although classical imaging is limited by the Rayleigh criterion, it has been demonstrated that subwavelength imaging of two point-like scatterers can be achieved with probing sensors arrays, even if the scatterers are located in the far field of the sensors. However, the role of noise is crucial to determine the resolution limit. This paper proposes a quantitative study of the influence of noise on the subwavelength resolution obtained with the DORT-MUSIC method. The DORT method, French acronym for decomposition of the time reversal operator, consists in studying the invariants of the time reversal operator. The method is combined here with the estimator MUSIC (MUltiple SIgnal Classification) to detect and image two close metallic wires. The microwaves measurements are performed between 2.6 GHz and 4 GHz. Two wires of λ/100 diameters separated by λ/6 are imaged and separated experimentally. To interpret this result in terms of noise level, the analytical expression of the eigenvectors of the time reversal operator perturbed by the noise is established. We then deduce the noise level above which the subwavelength resolution fails. Numerical simulations and experimental results validate the theoretical developments.
Citation
Matthieu Davy, Jean-Gabriel Minonzio, Julien de Rosny, Claire Prada, and Mathias Fink, "Influence of Noise on Subwavelength Imaging of Two Close Scatterers Using Time Reversal Method: Theory and Experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004
References

1. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301

2. Lev-Ari, H. and A. J. Devancy, "The time-reversal technique re-interpreted: Subspace-based signal processing for multi-static target location," Sensor Array and Multichannel Signal Processing Workshop, 2000, Proceedings of the 2000 IEEE, 509-513, 2000.
doi:10.1109/SAM.2000.878061

3. Prada, C. and M. Fink, "Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media," Wave Motion, Vol. 20, 151-163, 1994.
doi:10.1016/0165-2125(94)90039-6

4. Kerbrat, E., R. K. Ing, C. Prada, D. Cassereau, and M. Fink, "The D. O. R. T. method applied to detection and imaging in plates using Lamb waves," Review of Progress in Quantitative Nondestructive Evaluation, 934-940, Ames, Iowa (USA), 2001.

5. Prada, C., M. Tanter, and M. Fink, "Flaw detection in solid with the D. O. R. T. method," Ultrasonics Symposium, Vol. 1, 679-683, 1997.

6. Kerbrat, E., D. Clorennec, C. Prada, D. Royer, D. Cassereau, and M. Fink, "Detection of cracks in a thin air-filled hollow cylinder by application of the DORT method to elastic components of the echo," Ultrasonics, Vol. 40, 715-720, 2002.
doi:10.1016/S0041-624X(02)00199-3

7. Mordant, N., C. Prada, and M. Fink, "Highly resolved detection and selective focusing in a waveguide using the D. O. R. T. method," The Journal of the Acoustical Society of America, Vol. 105, 2634-2642, 1999.
doi:10.1121/1.426879

8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113

9. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers ," The Journal of the Acoustical Society of America, Vol. 99, 2067-2076, 1996.
doi:10.1121/1.415393

10. Prada, C. and J.-L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix ," The Journal of the Acoustical Society of America, Vol. 114, 235-243, 2003.
doi:10.1121/1.1568759

11. Devaney, A. J., "Super-resolution processing of multi-static data using time reversal and MUSIC,", http://www.ece.neu.edu/faculty/devaney/preprints/paper02n 00.pdf.

12. Lehman, S. K. and A. J. Devaney, "Transmission mode time-reversal super-resolution imaging," The Journal of the Acoustical Society of America, Vol. 113, 2742-2753, 2003.
doi:10.1121/1.1566975

13. Miwa, T. and I. Arai, "Super-resolution imaging for point reflectors near transmitting and receiving array," IEEE Transactions on Antennas and Propagation, Vol. 52, 220-229, 2004.
doi:10.1109/TAP.2003.820975

14. Baussard, A. and T. Boutin, "Time-reversal RAP-MUSIC imaging," Waves in Random and Complex Media, Vol. 18, 151-160, 2008.
doi:10.1080/17455030701481856

15. Simonetti, F., "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 73, 036619-13, 2006.

16. Simonetti, F., "Pushing the boundaries of ultrasound imaging to unravel the subwavelength world," Proceedings of IEEE International Ultrasonics Symposium, 313-316, Vancouver, Canada, 2006.

17. Simonetti, F., M. Fleming, and E. A. Marengo, "Illustration of the role of multiple scattering in subwavelength imaging from far-field measurements," J. Opt. Soc. Am. A, Vol. 25, 292-303, 2008.
doi:10.1364/JOSAA.25.000292

18. De Rosny, J. and C. Prada, "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 75, 048601-2, 2007.

19. Minonzio, J.-G., C. Prada, A. Aubry, and M. Fink, "Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment," The Journal of the Acoustical Society of America, Vol. 120, 875-883, 2006.
doi:10.1121/1.2217128

20. Moura, J. M. F. and J. Yuanwei, "Detection by time reversal: Single antenna," IEEE Transactions on Signal Processing, Vol. 55, 187-201, 2007.
doi:10.1109/TSP.2006.882114

21. Moura, J. M. F. and J. Yuanwei, "Time reversal imaging by adaptive interference canceling," IEEE Transactions on Signal Processing, Vol. 56, 233-247, 2008.
doi:10.1109/TSP.2007.906745

22. Minonzio, J.-G., M. Davy, J. de Rosny, C. Prada, and M. Fink, "Theory of the time-reversal operator for the dielectric cylinder using separate transmit and received arrays," IEEE Transactions on Antennas and Propagation, August 2009.

23. Stewart, G. W., "Perturbation theory for the singular value decomposition," SVD and Signal Processing, II: Algorithms Analysis and Applications, 99-109, 1990.

24. Xu, Z., "Perturbation analysis for subspace decomposition with applications in subspace-based algorithms," IEEE Transactions on Signal Processing, Vol. 50, 2820-2830, 2002.

25. Zhenhua, L., "Direct perturbation method for reanalysis of matrix singular value decomposition," Applied Mathematics and Mechanics, Vol. 18, 471-477, 1997.
doi:10.1007/BF02453742

26. Liu, J., X. Liu, and X. Ma, "First-order perturbation analysis of singular vectors in singular value decomposition," IEEE Transactions on Signal Processing, Vol. 56, 3044-3049, 2008.
doi:10.1109/TSP.2007.916137

27. De Moor, B., "The singular value decomposition and long and short spaces of noisy matrices," IEEE Transactions on Signal Processing, Vol. 41, 2826-2838, 1993.
doi:10.1109/78.236505