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15 Rue de l’Ecole de médecine, 75006 Paris, France

J. de Rosny, C. Prada, and M. Fink

Institut Langevin, ESPCI Paris Tech, CNRS UMR 7587
Laboratoire Ondes et Acoustique
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Abstract—Although classical imaging is limited by the Rayleigh
criterion, it has been demonstrated that subwavelength imaging of two
point-like scatterers can be achieved with probing sensors arrays, even
if the scatterers are located in the far field of the sensors. However,
the role of noise is crucial to determine the resolution limit. This
paper proposes a quantitative study of the influence of noise on the
subwavelength resolution obtained with the DORT-MUSIC method.
The DORT method, French acronym for decomposition of the time
reversal operator, consists in studying the invariants of the time
reversal operator. The method is combined here with the estimator
MUSIC (MUltiple SIgnal Classification) to detect and image two close
metallic wires. The microwaves measurements are performed between
2.6GHz and 4GHz. Two wires of λ/100 diameters separated by λ/6
are imaged and separated experimentally. To interpret this result in
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terms of noise level, the analytical expression of the eigenvectors of the
time reversal operator perturbed by the noise is established. We then
deduce the noise level above which the subwavelength resolution fails.
Numerical simulations and experimental results validate the theoretical
developments.

1. INTRODUCTION

A dramatic issue for all detection and imaging techniques concerns
the resolution. Here by resolution, we mean the capacity to separate
two close point-like, or isotropic scatterers. Indeed, in the far field
approximation, the diffraction limit is given by the Rayleigh criterion.
If the array of probing sensors is used to focus the waves, the
classical resolution is limited by λ/2, where λ is the wavelength of
the illuminating field. However, some methods lead to overcome this
limit in imaging. Multiple Signal Classification (MUSIC) is one of
them. This method was investigated by Cheney [1]. Lev-Avri and
Devaney combined first Time Reversal and MUSIC to achieve super-
resolution [2]. This method is however very sensitive to the noise.
Far field subwavelength resolution is consequently very challenging
experimentally.

Without noise, unlimited resolution can be achieved. Nevertheless
increasing the noise level degrades the quality of subwavelength
imaging. Some papers underlined the sensitivity of the DORT-MUSIC
method to the noise level, but, at our knowledge, no systematic study
has been conducted. In particular no analytical expression of the
resolution limit in presence of noise has been provided. The aim of
this paper is thus to explore the influence of the noise level on the
subwavelength imaging both experimentally and theoretically, using
isotropic electromagnetic scatterers.

The DORT method has been developed in acoustics since 1994 [3].
It consists in studying the Time Reversal Invariants (TRI) of the Time
Reversal Operator. This latter is built from the inter-element responses
matrix between an emitting and a receiving array. The DORT method
has been first applied to detect and focus selectively on different
scatterers in a medium [3]. Till now it has been studied in different
domains such as radar imaging [4], non-destructive evaluation [5, 6]
or underwater acoustics [7]. The studies about the application of
DORT method with microwaves began in 1999 with the work of Tortel
et al.. They investigated the role of different polarizations for dielectric
scatterers [8]. They showed experimentally that the DORT method
leads to localize dielectric cylinders with a high precision and a low
sensitivity to noise.
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In 1996, Prada et al. performed the first study of the time reversal
invariants to separate scatterers echoes and focus selectively on each
of them [9]. Regarding subwavelength imaging, in 2003 Prada et al.
showed that the DORT method leads to detect two wires distant from
less than half a wavelength [10]. At best, they experimentally resolved
λ/3 distant wires. To achieve such sub-wavelength resolution, they
suggested combining the DORT method with two different non-linear
signal processings: Maximum Likehood and MUSIC (Multiple Signal
Classification). The DORT-MUSIC algorithm gave the best results.

In an unpublished work [11], Devaney developed the formalism
of DORT-MUSIC method, assuming isotropic scatterers. Special
care was given to the maximum rank of the DORT matrix. Later,
Lehman and Devaney [12] focused on the detection of point-like
scatterers using DORT-MUSIC with two distinct arrays: one for the
emission and one for the reception. In the same way, Miwa and
Arai studied MUSIC algorithm in the case of the cross-borehole radar
arrangement [13]. Baussard introduced a numerical method based
on the recursively applied and projected (RAP) MUSIC to improve
detection and localization of close targets [14]. Besides the early works,
most of the surveys on this topic are theoretical and numerical. Along
the few ones that are experimental, there is the Simonetti’s work [15–
17]. The aim was to resolve two 2 small holes with elastic surface waves
or two small scattering with acoustic waves. Simonetti investigated the
influence of multiple scattering on subwavelength imaging. However
the first interpretation of the results [15] leads to a controversy [18].
In all these papers, scatterers are supposed to be isotropic: the rank
of the problem is equal to the numbers of scatterers. Considering
the two small elastic cylinders problem, Minonzio et al. showed the
anisotropy of the scattering can modify greatly the singular values [19].
That is why scatterers, which scattering is experimentally isotropic, are
considered in this paper.

The originality of this paper is twofold. First, no microwaves
experiments have been performed with two close point-like scatterers.
Second, thanks to the expansion of the singular vectors into power
series with respect to the noise variance, the super-resolution limit
is quantified. Concretely, a criterion describing the noise level above
which the subwavelength resolution fails will be worked out. This
criterion is very important experimentally to know if subwavelength
resolution can be achieved.

After a brief description of the decomposition of the time reversal
operator in Section 2, the experimental microwave setup is presented
in details in Section 3. In Section 4, the experimental results are
shown with two wires separated from less than half a wavelength.
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We successfully resolve two copper wires, with λ/200 diameter and
separated by λ/6. Section 5 is devoted to the development of the
theoretical expressions of the Time Reversal Invariants obtained with
two different antenna arrays: a transmit one and a receive one. In
Section 6, thanks to a perturbation approach, the TRI are deduced
in presence of external noise. Then the TRI are used to build up
the projection operator that is the heart of the MUSIC method.
The theoretical results are then compared to numerical simulations
and to the experiment. It will be shown that the DORT-MUSIC
subwavelength imaging imposes the noise to be inferior to a certain
level given in this paper. From this study, a new resolution criterion
is introduced.

2. TIME REVERSAL INVARIANTS AND SINGULAR
VALUE DECOMPOSITION

In the present paper, as seen in several previous work [5, 12, 20, 21],
DORT method is applied to distinct antenna arrays labelled A and B.
The number of antennas of arrays A and B are equal to NA and NB,
respectively. The receive vector R on array B is linearly linked to the
transmit vector E on array A through the linear relation R = KE. The
NB ×NA matrix K is the frequency dependent matrix containing the
inter-element response kij(ω) between element #j of the array A and
element #i of the array B. After time reversal, i.e., phase conjugation
of R at one frequency, the signal is emitted back by array B to the
array A. The signal received on array A writes KR∗ which is equal to
(KH KE)∗, where superscript ∗, T and H means conjugate, transpose
and transpose-conjugate respectively. If array B emits first the signal
E, the receive signal on array B after time reversal by array A is
(KKHE)∗.

Two matrices KKH and KHK appear, the so-called Time
Reversal Operators (TRO). They are diagonalizable because they are
Hermitian. We write vj the jth eigenvector of KHK and uj . the one
of KKH. These eigenvectors can be interpreted as the Invariants of
the Time Reversal (TRI) process. For instance, after emission of vj by
array A and time reversal by array B, the signals on array A is simply
given by λ2

jvj . The time reversal invariants can be also directly worked
out from the singular value decomposition (SVD) of the matrix K

K =
min(NA,NB)∑

j=1

(uj)λj (vj)
H (1)
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Hence the singular vectors of matrix K are the eigenvectors of the TRO.
As for the singular values, they are the square root of the eigenvalues.

Practically speaking, the K matrix is recorded between a transmit
(Tx) array and a receive (Rx) array. The vj will hence be also referred
as Tx singular vectors (or Tx-TRI) and the uj the Rx singular vectors
(or Rx-TRI).

3. EXPERIMENTAL SETUP

In our experiments, the receiving array is linear and continuous. The
emitting array is also linear but splits into two parts over the both
sides of the receiving array (see Fig. 1). We will see further that
this configuration is used to improve the imaging from the Rx Time
Reversal Invariants.

Two horn antennas, which are 96 cm long and have a 58◦ aperture
angle, move along the x-axis on a rail. The antennas are working
between 2.6GHz and 4 GHz. They are automated in rotation in order
to take aim to the wires at each position. The response between the
first and the second antenna is recorded on a vector spectral analyser
with a frequency step of 87.5 kHz. To minimize parasitic echoes, the
wall behind the wire is covered with anechoic material. The distance F

Figure 1. Experimental set-up.
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from the rail on which the antennas are mounted to the wires is equal
to 1.35 m. As the reception array aperture, denoted D, is of the same
order as F , the resolution λF/D is about λ.

The scatterers consist of two copper wires with 0.6 mm diameter,
corresponding to about 1/200λ. The distance 2dx between the two
wires is denoted d and ranges from λ/10 to λ/4.

4. EXPERIMENTAL RESULTS

4.1. Singular Values

To improve our results, the inter element responses of the medium
without the wires are subtracted. Consequently the remaining
parasitic echoes are therefore significantly reduced. The plot of the
singular values on Fig. 2 lets appear a dominant one. The second
singular value λ2 increases with respect to frequency, whereas the third
one λ3 that keeps steady is attributed to noise. We will see that the
ratio between the second singular value and the third one, i.e., λ2/λ3,
is a key parameter in order to perform sub-wavelength imaging.

4.2. Back-propagation of the Singular Vectors with the
MUSIC Algorithm

The resolution of a simple (linear) match filtering method (such as
beamforming) is limited to λ/2. So we choose a non-linear method, the
MUSIC algorithm to resolve close wires. The MUSIC method requires

Figure 2. Experimental singular values λn for a distance between the
two wires d equal to 22 mm.
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the knowledge of the medium Green’s function. Considering the system
as equivalent to a bi-dimensional one, the far field expression of the
Green’s function can be approximated by

G
(
r, r′

)
=

√
2

iπk |r− r′|e
ik|r−r′| (2)

In the horizontal plane, the two wires are considered as pointlike and
the field transmitted by the horn antennas is vertically polarized. As
shown in the Appendix of [22], the scattering of a small metallic
cylinder in E parallel polarization corresponds to the Dirichlet
condition and it is equivalent to the acoustical soft boundary condition
as an air bubble in water. It implies that for diameter small compared
to the wavelength, the scattering is purely isotropic and non negligible.

In such a case, the dimension p of the signal subspace, i.e., the
rank of K, is equal to the number of scatterers. Here p = 2. The
MUSIC estimator writes:

IMU (r) =
1

1−
2∑

n=1

∣∣∣
〈
un

∣∣∣ G̃ (r)
〉∣∣∣

2
(3)

The vector G̃ (r) stands for the normalized vector (G (r) / ‖G (r)‖) and
the ith component of vector G(r) is given by G(r, ri). The antenna
positions rj must be accurately known to be able to resolve close wire.

(a) (b)

Figure 3. (a) Normalized classical back-propagation of the first
singular vector (continuous) and the second one (dashed line). (b)
Normalized MUSIC estimators obtained with the two first singular
values in case of: Two wires (continuous line), left wire (dashed line)
and right wire (circle).
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In Fig. 3 are plotted the results of the MUSIC estimation obtained
for 3 configurations: The left wire alone, the right wire alone and both
of them. We see that MUSIC estimator enables to localize the wires
that are spaced by λ/3.5.

At best, the resolution of wires separated by d = λ/6 is achieved.
As it can be seen on Fig. 4, the smaller d is, the weaker the double
maxima relative amplitude is.

To quantify the subwavelength resolution, we have plotted the
MUSIC estimation computed on the x-axis versus λ/d (Fig. 5). While
d/λ is large enough, it appears that the two wires are well resolved.

(a) (b)

Figure 4. Imaged obtained with MUSIC, (a) d = λ/5, (b) d = λ/6
(λ = 11.5 cm here).

Figure 5. MUSIC algorithm projected on the x-axis with respect to
d/λ for two wires separated of d = 2 cm.
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Two spots appear on the image at the wires location. When d/λ
decreases, the interpretation becomes less obvious. Above (d/λ)lim =
0.195, the system is no more resolved and only one spot appears on
the image, localized between the two wires.

The two wires are not resolved although the second singular value
is still above the noise background. In the next sections, we propose a
theoretical analysis to explain this effect.

5. THEORY: SINGULAR VALUE DECOMPOSITION OF
K

As the wires and the polarization of the antennas are both vertical,
the problem is reduced to a two-dimensional scalar problem. The same
formalism as in Ref. [19] is used. For the left wire alone, the rank of
K equals 1 and the SVD writes ŨLσṼH

L . The vectors ṼL and ŨL

stands for the normalized propagation from the Tx-array to the left
wire and the left wire to the Rx-array, respectively (i.e., G̃(rTx

i , rL)
and G̃(rL, rRx

i )). Replacing L-subscript by R-subscript provides the
expression for the right wire. The coefficient σ stands for the scattering
coefficient of one wire multiplied by the norm of the propagating
vectors [19]. When the two wires are in front of the arrays, the K
matrix is written

K = ŨLσṼH
L + ŨRσṼH

R . (4)
Here the multiple scattering between the wires is neglected. Taking it
into account leads to

K=
1

1−(R0h)2
(
ŨLσṼH

L +ŨRσṼH
R +ŨLσhR0ṼH

R +ŨRσhR0ṼH
L

)
,

(5)
where R0 is the reflection coefficient of one wire and h = eikd√

kd
stands for

Green’s function between the two wires. The NRx ×NTx matrix can
be reduced to a problem of rank 2 (2 by 2 matrix). The two non-zero
singular values of K are given by




λ1 = |σ|
√

1 + wTx
LR + wRx

LR + wTx
LRwRx

LR

∣∣∣ 1
1−R0h

∣∣∣

λ2 = |σ|
√

1− wTx
LR − wRx

LR + wTx
LRwRx

LR

∣∣∣ 1
1+R0h

∣∣∣
. (6)

They are associated with the singular vectors:



u1 ≈ (ŨL+ŨR)
‖ŨL+ŨR‖

u2 ≈ (ŨL−ŨR)
‖ŨL−ŨR‖

(7)
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In Eq. (6), the term wTx
LR (resp. wRx

LR) stands for the scalar products
between ṼL and ṼR (resp. ŨL and ŨR). As the distance between the
two wires decreases, wRx

LR and wTx
LR increase towards 1. As a result, the

first singular value increases and the second one decreases. Hence, the
second one can be very sensitive to noise, which degrades the quality
of the imaging. As the wires are considered to be in the far field from
the arrays, {

ŨL

}
j

=
1√
NTx

eikrRx
jL (8)

where rRx
jL is the distance for Rx-antenna #j and the left wire. Same

expressions are obtained for the right wire and the Tx-array. In the
following the Rx superscript is omitted because only the Rx-array is
considered. In Eq. (8), the aperture of the antennas is not taken into
account because the antennas take aim to the wires location. Thanks
to the symmetric configuration of the receiving array (Fig. 6), the
positions are well approximated by{

rRj ≈ rj − dx sin (φj)

rLj ≈ rj + dx sin(φj)
(9)

From Eqs. (7) and (9) the singular vectors can then be written



u1j = 1

‖ŨL+ŨR‖eikrj cos (kdx sin (φj))

u2j = 1

‖ŨL−ŨR‖eikrj sin (kdx sin (φj))
(10)

Figure 6. Experimental configuration of the Tx-array in front of the
two wires that are 2dx distant.
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(a) (b)

Figure 7. (a) Experimental phase of the first (o marker, continuous
line) and second (∗ marker, continuous line) singular vectors, and
theoretical −krj (dash line), (b) modulus of the first and second
singular vectors, theoretical (dashed line, o marker) and experimental
(continuous).

Figure 7 shows a good fit between the experimental and theoretical
singular vectors given by Eq. (10). Due to the orthogonality between
the singular vectors, the second vanishes with a π phase shift, between
the 5th and the 6th antenna.

Nevertheless, a slight mismatch between theoretical and experi-
mental singular values can completely degrade the MUSIC technique.
To estimate how fast is the degradation; we will assume that it is
mainly due to external noise on the measurement of K matrix. Hence
in the next section, using a Taylor expansion, the singular vectors are
theoretically computed.

6. PERTURBATION THEORY ON SINGULAR
VECTORS

In this part, the sensitivity of the DORT-MUSIC method to
noise will be quantitatively discussed for subwavelength resolution.
Theoretically, without noise, the MUSIC estimator diverges on the
two wires locations, whatever the distance between them. It implies
that the two wires are in this ideal case always resolved with DORT-
MUSIC method, even for very close wires. However, for any small
perturbation, the MUSIC estimator remains finite and the resolution
is therefore not systematically achieved. To quantify the effect, we
analytically estimates Eq. (3) in the case of a white Gaussian noise of
variance σB that perturbs the K matrix measurement. The singular
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vectors are expanded in Taylor’s series of the noise variance. The aim is
to work out an analytical expression of the noise level above which the
MUSIC estimator fails to resolve the wires. In fact, contrary to what
one would expect at first thought, the subwavelength resolution of the
two wires does not always occurs when the second signal singular value
is higher than the third one associated to noise. We will show that,
in the far field limit, an explicit criterion between those two singular
values can be worked out in order to achieve subwavelength imaging.

To validate the theoretical expressions, they are compared to
simple numerical simulations developed under Matlab. In the
numerical simulations, the propagation between the antennas and the
wires are modelled by the Green’s function. The scattering coefficients
of the two wires are equal. An additive white Gaussian noise is added to
the K matrix. The number of antennas of the emitting and receiving
arrays is chosen to be large enough to allow a statistical approach
(NRx = NTx = N = 100). The wavelength λ equals 0.1m. The
distance between the wires is noted d, with d = 2dx, and the noise
variance σ2

B. The aperture D of the receiving array is 0.2m, and the
wires are located at a distance F = 5 m from the arrays. The distance
between the wires varies between λ/10 and λ/2 in the simulations.

6.1. Expansion of the Singular Values into Convergent
Power Series

Consider the previous theoretical matrix K perturbed by a noise
random matrix:

Kp = K + σB∆K =
2∑

i=1

(ui)λi(vi)H + σB∆K (11)

From now a p superscript indicates perturbed values to distinguish
them from their unperturbed values. The matrix ∆K is a random
matrix. Its Frobenius norm equals 1. By definition, the Frobenius
norm of a matrix A is given by:

‖A‖F =
√∑

i,j

|Aij |2 (12)

Similarly to Eq. (11), the SVD of K is given by

Kp =
N∑

i=1

(
up

i

)
λp

i

(
vp

i

)H (13)

In this section the singular vectors of Kp will be established in order
to use them, in the next section, in the MUSIC estimator. The
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perturbation analysis on singular vectors and singular values has been
well documented in literature [23–27]. The perturbation of the singular
vectors that span the signal subspace was especially established at first
and second order [24, 25].

Due to the noise perturbation, the singular vectors can be
expanded into convergent power series of the noise variance. Developed
at the second order in small parameter σB, the singular vectors of the
perturbed matrix Kp can be written as:

up
i = ui + σBw(1)

i + σ2
Bw(2)

i + o
(
σ2

B

)
(1 ≤ i ≤ 2) (14)

The approximation made to develop the singular vectors into power
series and the expression of the vectors w1 and w2 are given in
Appendix A. The expected (mean) values of their different components
are also expressed. Their expected values will be used in the following
to estimate the mean perturbation on the MUSIC estimator.

When the wires are close, we have seen that the first singular
value is much bigger than second one. As a result, according to the
expression provided par Jun et al. [26], the expected perturbation on
the first singular vector is roughly null at the second order:

up
1 ' u1 + o

(
σ2

B

)
(15)

Only the perturbation on the second singular vector will then
significantly modify the MUSIC estimator.

6.2. Application to the MUSIC Estimator

To simplify the results of the MUSIC algorithm, let us define the L
function as:

L
(
G̃ (r)

)
=

∣∣∣
〈
up

1

∣∣∣ G̃ (r)
〉∣∣∣

2
+

∣∣∣
〈
up

2

∣∣∣ G̃ (r)
〉∣∣∣

2
. (16)

L represents the square of the distance of G̃ from the subspace built
from u1 and u2. Then the MUSIC estimator becomes:

IMU

(
G̃ (r)

)
=

1

1− L
(
G̃ (r)

) (17)

The IMU estimator only increases the contrast of the L estimator
thanks to a strong non-linear relation. In the upcoming calculations,
we use ŨL, ŨR as in the previous section. Furthermore, we define ŨM

as the propagating vector between the receiving array and the position
exactly between the two wires. Indeed, we will show that the wires are
not anymore resolved when the expected value on the wires becomes
inferior to the expected value between the wires.
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The vector ŨL can be expressed in terms of the signal subspace
{u1,u2} as:

ŨL =
1
2

(
u1

∥∥∥ŨL + ŨR

∥∥∥ + u2

∥∥∥ŨL − ŨR

∥∥∥
)

(18)

with
∥∥∥ŨL + ŨR

∥∥∥ =
√

2 (1 + w) and
∥∥∥ŨL − ŨR

∥∥∥ =
√

2 (1− w). The

scalar w stands for the scalar cross product between ŨL and ŨR, w is
real in the far field approximation.

The expected value of the estimator L applied to the vectors ŨL

can now be calculated. The first order perturbation has no effect on
the mean value of L. The expected value of L is computed at the
second order in Appendix A. It leads to

E
[
L

(
ŨL

)]
=

1 + w

2
+

1− w

2

(
1− (N − 2)σ2

B

λ2
2

)
+ o

(
σ2

B

)
. (19)

The expected value of L(ŨL) decreases from 1 when noise increases.
Between the two wires, the contribution of the second singular vector,
associated to an antisymetric field, is null, so L(ŨM ) is given by:

E
[
L

(
ŨM

)]
=

∣∣∣
〈
u1

∣∣∣ ŨM

〉∣∣∣
2

(20)

To express the third singular value, one should use some results of the
random matrix theory. Assuming the noise completely decorrelated
from antenna to antenna, the singular values λn of which index is
larger than 2 are the same ones, in a statistical point of view, as the
ones of a (N − 2) ∗ (N − 2) random matrix. The quadrant law gives
the distribution of the singular values of such a matrix. Especially, the
largest singular value (i.e., λ3), is given by:

λ3 = 2
√

N − 2σB (21)

Fig. 8 displays the evolution of the L estimator for ŨM and for ŨL with
respect to λ3/λ2. The analytical formula in Eq. (19) fits the simulated
curve very well.

The standard deviation normalized by the mean value of L(ŨL)
is small compared to its expected value (roughly equal to λ2/λ1). As a
consequence, its value in one experimental measurement will be close
to the analytical expected value.

In Paragraph 6.4, the threshold value of λ3 above which the wires
are not anymore resolved will be worked out.
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Figure 8. Simulated 1 − L(ŨM) (continuous) and 1− L(ŨL) (dots)
compared to the analytical formula in (19) (markers). The simulation
parameter d is: d = 0.39λ.

6.3. Estimated Profile

We can also predict the expected profile of the DORT-MUSIC
estimator between the two wires. For a point of coordinates r =
[x, F ], the vector (Ũx)i = eik(ri−x sin(φi))√

N
is very close to ŨL and

ŨR. Consequently, when computing E[L(Ũδ)], the contribution to
the scalar products in (16) mainly comes from the components u1 and
u2 (the signal sub-space) of Eq. (14). We neglect in particular the
contribution of the noise subspace perturbation in |〈Ũx|up

2〉|2.
In such a case, assuming that the wires are in the far-field and

that the array aperture and the step between two antenna positions
are sufficiently small, the L estimator writes from Appendix B:

E
[
L

(
Ũx

)]

= 1
2(1+sinc(kdxD/F ))

[
sinc

(
k(dx−x)D

2F

)
+sinc

(
k(dx+x)D

2F

)]2

+ 1
2(1−sinc(kdxD/F ))

[
sinc

(
k(dx−x)D

2F

)
− sinc

(
k(dx+x)D

2F

)]2(
1− λ2

3

4λ2
2

)

(22)
This formula is consistent with the expected values computed
previously. Using Eq. (22), the DORT-MUSIC image can be built. The
comparison between numerical simulation and the theoretical shape
confirms the validity of our approach.

The theoretical IMU is also compared to the experimental results
in Fig. 10.
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(a) (b)

Figure 9. DORT-MUSIC estimator for two 0.36λ distant wires:
Simulation (continuous line) and analytical expression from Eq. (22)
(dots). Figure (a) is obtained without noise and (b) with λ3/λ2 = 0.36.

Figure 10. DORT-MUSIC estimator analytical expression from
Eq. (22) (circles) with λ3/λ2 = 0.24 and experimental result
(continuous line) for λ3/λ2 = 0.22. The distance between the wires
is d = 0.3λ.

The agreement with the theory is excellent when the ratio λ3λ2

in Eq. (22) is set to 0.24. This ratio is a little bit higher than the
0.22 experimental one. This result can be explained by the mismatch
between the idealized model and the real experiment (such as antenna
location, wave polarization, 2D assumption, etc.) This mismatch
induces some “virtual” noise which has to be added to the measure
noise. The experimental estimator corresponds then to a lightly
superior white noise level.
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6.4. Criterion to Resolve the System, Resolution Limit in
Presence of Noise

To finish, from a given noise level, the expected value of L on the wires
becomes inferior to the value between the wires. The subwavelength
resolution cannot then be achieved because only one peak appears on
the image. A resolution criterion can then be introduced:

E
[
L

(
ŨL

)]
> E

[
L

(
ŨM

)]
. (23)

Using Eqs. (19), (20) and (21), the ratio between the third and the
second singular value providing the super-resolution limit becomes

λ3

λ2
≤ λ3

λ2

∣∣∣∣
lim

' 2

√√√√√2
(

1−
〈
u1|ŨM

〉2
)

1− w
. (24)

However, the expression in Eq. (24) is very general. Assuming the
same small aperture hypothesis used in the previous section, we show
in Appendix C that Eq. (24) is simplified into

λ3

λ2

∣∣∣∣
lim

=
π√
15

D

F

d

λ
+ o

(
D

F

d

λ

)
. (25)

This linear evolution is displayed in Fig. 11, where the expression
in (25) is compared to numerical simulations.

Figure 11. Simulated (markers) and analytical (continuous line)
ratios λ3

λ2

∣∣∣
lim

with respect to D
F

d
λ .
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Equation (25) leads to quantify the noise level above which the
subwavelength resolution fails. The main result is that the super-
resolution is not achieved when the criterion is not verified even
if the second singular value is higher than third one. Indeed the
second singular vectors can be too much perturbed in order to achieve
subwavelength resolution. Hence, the DORT-MUSIC algorithm is then
very sensitive to noise. However, for a distance between the wires close
to or larger than λ/2, the super-resolution limit ratio is close to 1, that
means the two wires are resolved as soon as the second singular value
emerges from the noise background.

7. DISCUSSION

From Eq. (4), we deduce the transfer response between antenna #i
and #j in a free space medium:

Kij = 2
eik(rTx

i +rRx
j )

rTx
i rRx

j

cos

(
kdx

(
XRx

i

F
+

XTx
j

F

))
(26)

Here, for simplicity, we neglect multiple scattering. The phase of the
response Kij in Eq. (26) only depends on the barycentre of the wires
while the distance dx between them only affects the amplitude term
through the cosine function. Integrating this cosinus function over the
whole array aperture lets appear a sinc function of the distance dx
divided by the resolution cell λF/D. This integral is used to calculate
the scalar product w developed in Appendix B, Eq. (41), which is a
key parameter for resolution. As the slope of the sinc function varies
linearly with dx, the sensitivity to a variation of dx also decreases
linearly with dx. This fact explains the difficulty to separate close
targets. As shown in Eq. (25), the smaller the distance between the
wires is, the more sensitive the DORT-MUSIC estimator becomes.

Concretely, two concomitant effects explain this consideration.
First, the second singular value decreases when the wires become close,
because the scalar product w increases and becomes close to 1 (see
Eq. (6)). Second, for a small distance between the wires, following
the criterion in Eq. (25), the second singular value should be much
larger than the third one. To understand this point, if we used a
classical beam-forming method for each wires, the two focal spots
would overlap and the level between them would increase when d
decreases. The DORT-MUSIC method overcomes this difficulty by
the way of a strongly non-linear relation. However, the drawback is
the dramatic sensitivity to noise. The subwavelength resolution in
presence of noise becomes thus all the more difficult to achieve that d
is small.
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Note that the perturbation theory on the singular vectors is still
valid whether multiple scattering occurs between the wires. Without
noise, single scattering and multiple scattering singular vectors are the
same. With noise, multiple scattering can either increase or decrease
the second singular value. Simonetti et al. proposed that multiple
scattering can be really helpful in case of large noise levels [17]. In
fact, in the case of the DORT-MUSIC method, multiple scattering will
only change the singular values. The interaction between the noise
level and the associated singular vectors used to image the scatterers
is then a key point to achieve super-resolution. As the criterion is still
valid, multiple scattering will either improve or degrade the resolution
limit.

In DORT-MUSIC method, a key point concerns the number of
singular vectors that are taken into account in the signal subspace.
It has been shown that including the first noise singular vectors
can improve the DORT-MUSIC. Prada et al. observed that the
performance of the MUSIC algorithm could be improved by selecting
the first seven singular vectors [10], for an emitting-receiving array of
128 transducers. Experimentally, we observed a similar phenomenon,
whereas the number of antennas was much smaller (N = 10). But those
noise singular vectors that improved the resolution were not necessarily
the same at each frequency. In fact, the singular vectors up

k, k > 2,
of the perturbed matrix Kp depend also on the 2 singular vectors of
the unperturbed matrix K. Hence the noise subspace contains also
useful information. This fact explains that including more singular
vectors can improve the DORT-MUSIC performances. A future work
will consist in studying the resolution property of the DORT method
combined with other estimators such as minimum variance or white
noise constrained where all the singular vectors are taken into account
with different weight for each of them.

8. CONCLUSION

This study results from the need to interpret experimental results
obtained with the DORT-MUSIC method applied to two close metallic
wires. Hence, the efficiency of the DORT method to image a
subwavelength system of two small scatterers has been proved. This
study is based on the analysis of the singular vectors in terms of Taylor
power series. From this analysis, the performance of the DORT-
MUSIC method has been studied in details. Special care has been
given to the limit of the method in terms of signal to noise ratio.
Especially it has been shown that even if the second singular value is
larger than the noise singular values, it might be still impossible to
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resolve the two wires. Our approach has been validated numerically
and experimentally.
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APPENDIX A.

Considering that the expansion in power series is valid for

E [‖σB∆K‖F ] ¿
∥∥∥∥∥

2∑

i=1

(ui)λi(vi)H
∥∥∥∥∥

F

,

it means that the second order perturbation holds true as long as:

NσB ¿
√

λ2
1 + λ2

2 (A1)

As we are interested in configurations where the distance between the
wires is small compared to the wavelength, the second singular value
λ2 is small compared to the first singular value. The noise variance is
also considered as inferior to the second singular value but of the same
order: λ1 À λ2 > σB. In such a case, an other hypothesis is done in
the following calculations:

λ2
1 + λ2

2(
λ2

1 − λ2
2

)2 '
1
λ2

1

¿ N − 2
λ2

2

(A2)

According to the SVD properties (projection on signal subspace and
orthogonality of the new singular vectors), the first order perturbation
is given by:

w(1)
1 =

uH
2

(
∆KKH + K∆KH

)
u1

λ2
1 − λ2

2

u2

+
N∑

k=3

uH
k

(
∆KKH + K∆KH

)
u1

λ2
1

uk (A3)

w(1)
2 =

uH
1

(
∆KKH + K∆KH

)
u2

λ2
2 − λ2

1

u1

+
N∑

k=3

uH
k

(
∆KKH + K∆KH

)
u2

λ2
2

uk (A4)
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Vectors w(1)
1 and w(1)

2 are composed of two contributions: the first
one stands for the contribution of the signal subspace (generated by
u1 and u2), whereas the second one for the contribution of the “noise”
subspace. This last one is responsible of the degradation of the MUSIC
estimator.

Considering the expected value of their components, Jun Liu et al.
in [26] showed that:

E
[〈

w(1)
2 |u1

〉]
= 0 (A5)

E

[∥∥∥
〈
w(1)

2 |u1

〉
u1

∥∥∥
2
]

=
λ2

1 + λ2
2(

λ2
1 − λ2

2

)2 ≈ 0 (A6)

E




∥∥∥∥∥
N∑

k=3

〈
w(1)

2 |uk

〉
uk

∥∥∥∥∥

2

 =

N − 2
λ2

2

, (A7)

where E stands for the expected value (mean). Due to the
approximation made in Eq. (A2), the expected signal subspace
contribution on the second singular vectors perturbation in Eq. (A6)
is far less than the one of the noise subspace, expressed in Eq. (A7).

The second order expansions of up
1 and up

2 are much more complex.
The exact expression of the second order perturbation is given in
reference [25]. Nevertheless w(2)

1 and w(2)
2 can be expressed in terms

of the uk vectors:

w(2)
i =

N∑

k=1

akiuk (A8)

For the second singular vector, the two first coefficients at the second
order are:

a12 =
λ1uH

1 ∆Kw(1)
2 + λ2uH

1 ∆KHw(1)
2 − (λ1c1 + λ2c2)

λ2
2 − λ2

1

(A9)

a22 = −1
2

(
w(1)

2

H
w(1)

2

)
(A10)

where c1 and c2 in Eq. (A9) stands for two coefficients verifying
E[ck] = 0 (1 ≤ k ≤ 2). The other coefficients are not necessary to
apply the MUSIC estimator.

Their expected values become:

E [a12] ' 0 and E [a22] = −1
2

N − 2
λ2

2

(A11)
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In order to apply the MUSIC algorithm, the norm of the perturbed
singular vectors at the second order has to equal 1. If the norm of the
first singular vector is obvious, concerning the second one, it verifies:

‖up
2‖2 = (up

2/u
p
2)

= 〈u2|u2〉+ 2σB

〈
w(1)

2 |u2

〉

+ σ2
B

(∥∥∥w(1)
2

∥∥∥
2
+ 2

〈
w(2)

2 |u2

〉)
+ o

(
σ2

B

)
(A12)

As {uk} constitutes an orthonormal basis and due to Eq. (33) and
Eq. (37), it becomes:

∥∥up
2

∥∥2 ' 1 + o
(
σ2

B

)
(A13)

The two wires are then well orthogonal and normalized, even at the
second order.

APPENDIX B.

If the wires are in the far field and the array pitch sufficiently small,
the scalar product between ŨL and ŨR becomes:

w ≈ 1
N

∫ D/2

−D/2
e2ikdx s

F
ds

p
, (B1)

The integration is done along the x-axis, but we use the index s for
not confounding with the distance dx. It leads to:

w ≈ sinc
(

kdD

2F

)
. (B2)

Moreover, in the same way, the expected value of the scalar products
between the singular vectors and Ũδ can be computed:
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2
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which gives:
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In the same way,
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which results to
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Finally, it leads to
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[
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This formula gives the expected profile between the two wires.

APPENDIX C.

First we remain that the scalar product of the first singular value of
the vector of the point between the wires is:

〈
u1|Ũ0

〉
≈

√
2

1 + w
sinc

(
kdx

D

2F

)
(C1)

Using Eq. (24) and Eq. (C1), the threshold ratio giving the resolution
criterion in (24) becomes:
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By developing the sinc function at the fourth order with respect to
(kdxD

F ), we finally obtain:
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