Vol. 96
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-03
Theoretical Model of Electromagnetic Scattering from 3D Multi-Layer Dielectric Media with Slightly Rough Surfaces
By
Progress In Electromagnetics Research, Vol. 96, 37-62, 2009
Abstract
A theoretical model of scattering from three-dimensional arbitrary layered media with 3D infinite rough surfaces based on the small perturbation method (SPM) is derived in the present paper. The scattering field and bistatic scattering coe±cient for linear polarized waves are derived respectively. Firstly, the electric and magnetic fields in each region of the layered structure are expanded into perturbation series in spectral domain. Secondly, the expansion coefficients of each order are obtained by applying the boundary conditions. As a result, the expressions of the zeroth-, first- and second-order solutions of the scattering problem based on the SPM are obtained, in which the second-order solution is the primary contribution of this work. The theoretical model is helpful to understand the dependence between the scattering field and physical properties of the layered structure (such as surface roughness and dielectric constants at different depths). The result can be applied to modeling of the received radar signal from nature targets such as layered soil and ice with full polarizations.
Citation
Zhiwei Lin, Xiaojuan Zhang, and Guangyou Fang, "Theoretical Model of Electromagnetic Scattering from 3D Multi-Layer Dielectric Media with Slightly Rough Surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.2528/PIER09061102
References

1. Franceschini, G., A. Abubakar, T. M. Habashy, et al. "A comparative assessment among iterative linear solvers dealing with electromagnetic integral equations in 3D inhomogeneous anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 899-914, 2007.
doi:10.1163/156939307780749048

2. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

3. Popov, A. V. and V. V. Kopeikin, "Electromagnetic pulse propagation over nonuniform earth surface: Numerical simulation," Progress In Electromagnetics Research B, Vol. 6, 37-64, 2008.
doi:10.2528/PIERB08031102

4. Hichem, N. and T. Aguili, "Scattering by multilayered structures using the extended method of auxiliary sources EMAS," Progress In Electromagnetics Research B, Vol. 15, 133-150, 2009.
doi:10.2528/PIERB09042307

5. Wang, R. and L.-X. Guo, "Numerical simulations of wave scattering from two-layered rough interface," Progress In Electromagnetics Research B, Vol. 10, 163-175, 2008.
doi:10.2528/PIERB08082903

6. Fuks, I. M., "Wave diffraction by a rough boundary of an arbitrary plane-layered medium," IEEE Transactions on Antenna and Propagation, Vol. 49, No. 4, 630-639, 2001.
doi:10.1109/8.923325

7. Azadegan, R. and K. Sarabandi, "Analytical formulation of the scattering by a slightly rough dielectric boundary covered with a homogenous dielectric layer," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 420-423, 2003.

8. Franceschetti, G., P. Imperatore, A. Iodice, et al. "Scattering from layered structures with one rough interface: A unified formulation of perturbative solutions," IEEE Transaction on Geoscience and Remote Sensing, Vol. 46, No. 6, 1634-1643, 2008.
doi:10.1109/TGRS.2008.916222

9. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Transaction on Geoscience and Remote Sensing, Vol. 47, No. 4, 1056-1072, 2009.
doi:10.1109/TGRS.2008.2007804

10. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces, interfaces," IEEE Transaction on Geoscience and Remote Sensing, Vol. 44, No. 8, 2102-2114, 2006.
doi:10.1109/TGRS.2006.872140

11. Hajnsek, I., E. Pottier, and S. R. Cloude, "Inversion of surface parameters from polarimetric SAR," IEEE Transaction on Geoscience and Remote Sensing, Vol. 41, No. 4, 727-744, 2003.
doi:10.1109/TGRS.2003.810702

12. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves Advanced Topics, Wiley, 2001.

13. Johnson, J. T., "Third-order small-perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 16, No. 11, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720

14. Greffet, J. J., "Theoretical model of the shift of the brewster angle on a rough surface," Optical Letters, Vol. 17, No. 4, 238-240, 1992.
doi:10.1364/OL.17.000238