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Abstract—A theoretical model of scattering from three-dimensional
arbitrary layered media with 3D infinite rough surfaces based on the
small perturbation method (SPM) is derived in the present paper. The
scattering field and bistatic scattering coefficient for linear polarized
waves are derived respectively. Firstly, the electric and magnetic fields
in each region of the layered structure are expanded into perturbation
series in spectral domain. Secondly, the expansion coefficients of
each order are obtained by applying the boundary conditions. As a
result, the expressions of the zeroth-, first- and second-order solutions
of the scattering problem based on the SPM are obtained, in which the
second-order solution is the primary contribution of this work. The
theoretical model is helpful to understand the dependence between the
scattering field and physical properties of the layered structure (such
as surface roughness and dielectric constants at different depths). The
result can be applied to modeling of the received radar signal from
nature targets such as layered soil and ice with full polarizations.

1. INTRODUCTION

The problem of electromagnetic scattering from inhomogeneous media
has been investigated for several decades [1–4]. The scattering models
are applied to remote sensing, geoscience and optics. In recent
years, a number of researches focus on scattering from inhomogeneous
dielectric subsurface structure with rough interfaces considering the
penetration property of electromagnetic waves. In the application of
remote sensing, the scattering models are helpful for understanding
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the forward problem of scattering from natural targets such as layered
soil, sea ice, ionosphere, lunar surface, etc. [1–10].

In terms of applications, the explicit closed-form solutions of
the scattering problem are highly desirable, while the numerical
methods have huge computational costs and can not reveal the internal
relationship between the scattering patterns and the geometrical and
physical parameters of the targets. When the penetration property
of electromagnetic waves is taken into account, the wave number k is
often small, thus kh and kl both are small numbers for slightly rough
surfaces, where h and l are the rms height and correlation length of
the rough surfaces respectively. In this case, a perturbation technique
is often employed to solve the scattering problem [9].

The closed-form solutions of the scattering problem have been
derived based on the first-order small perturbation method (SPM) in
recent work. Fuks has investigated problem of electromagnetic wave
scattering from an arbitrary layered medium with rough surfaces using
an equivalent current model [6]. Sarabandi et al. have studied the radar
response of a multi-layer dielectric media with a rough interface [7].
Franceschetti et al. have analyzed the connection between the existing
first-order SPM solutions for the scattering from a layered structure
with a rough interface and casted the existing first-order models in
a unified compact formulation. Imperatore et al. have derived the
solution of the problem of electromagnetic scattering from a layered
structure with an arbitrary number of rough interfaces [9].

The first-order SPM solution gives explicit close-form analytical
expressions. However, the first-order SPM solution is unable
to characterize the cross-polarized backscattering which plays an
important role in signal simulation of the scattering problem with
full polarizations and parameter inversion of surface and subsurface
structures (such as soil moisture for different depths of the subsurface
structure and roughness of the surfaces) using polarimetric synthetic
aperture radar (PolSAR). Cloude et al. have proposed an alternative
way to introduce the cross-polarized backscattering into the first-order
SPM solution by rotating a random angle to the plane perpendicular
to the scattering plane [11], but the range and distribution of the
random variables are unpredictable and need further discussion. In
the framework of the perturbation technique, a recommended way to
solve this problem is to derive the high-order solutions.

In this work, we derive the SPM solutions for the scattering from
arbitrary layered media with 3D infinite rough surfaces up to the
second order. The electric and magnetic fields in each region of the
layered structure are expanded as a superposition of up- and down-
going orthogonal polarized plane waves toward different directions
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of upper and lower half-space with unknown amplitudes in spectral
domain. Since the interfaces in the subsurface structure are assumed to
be planar, the generalized reflection coefficient is introduced to specify
the reflection from the subsurface structure. The waves scattered by
the rough surfaces are expanded into perturbation series with unknown
coefficients. The expansion coefficient of each order is then solved by
applying the boundary conditions. The scattering field in the far-
field zone is approximated by the stationary phase method. Since we
suppose the height profile of the rough surfaces is a Gaussian process,
the coupling between the first- and second-order fields disappears when
we calculate the bistatic scattering coefficient of the layered structure.
As a result, the closed-form expressions of the scattering fields and
bistatic scattering coefficients of the first- and second-order SPM
solutions for the layered structure are obtained. Numerical samples
are carried out to illustrate the contributions of zeroth-, first- and
second-order of SPM solutions to the scattering pattern of the layered
structure. The correction introduced by the second-order solution to
the coherent reflected field of the layered structure is also illustrated.

2. PRELIMINARIES

2.1. Geometry

Figure 1 shows the 2D section of the proposed 3D problem. Regions
0 and n are half-spaces. The interface sandwiched between regions
0 and 1 is a 3D infinite rough boundary. Other interfaces are
assumed to be planar and parallel with each other. Each region is
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Figure 1. 2D slice of multi-layer dielectric media with rough surfaces.
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a homogeneous medium with a dielectric constant εm, m = 0, 1, . . . , n.
The permeabilities of all regions are assumed equal to the permeability
of free space. The wave number of each region is denoted by km,
m = 0, 1, . . . , n. The depth of the planar interface between regions m
and m + 1 is denoted by dm, m = 1, 2, . . . , n− 1.

The surface profile is denoted by z = g(x, y), where g(x, y) is a
Gaussian process with known statistical characteristics. The surface
height profile is assumed to be statistically homogeneous. The rms
height h and correlation length l of the rough surfaces are assumed to
be small numbers compared to the incident wavelength to ensure the
perturbation approximation to be carried out. However, the range of
validity of the perturbation technique is out of the discussion of the
present paper.

2.2. Problem Definition

In the following sections, the parameters with the superscript i are
of the incident wave. The superscripts (or subscript) h and v denote
the H polarization and V polarization. The subscript ⊥ denotes the
projection of the corresponding vector on plane z = 0. The subscripts
x, y or z denotes the projection of the corresponding vector on x, y or
z axis, respectively. The parameters with subscript m belong to region
m, m = 0, 1, . . . , n.

The plane wave incident on the layered structure from region 0 is

Ēi
0 (r̄) = eik̄i

0·r̄êi
0 (1)

where r̄ is the position vector, k̄i
0 = k̄i

⊥−ki
0z ẑ = ki

xx̂+ki
yŷ−ki

0z ẑ = k0k̂
i
0;

k0 =
√

k2
x + k2

y + k2
z is the wave number of the incident wave; k̂i

0 is the

unit vector of the incident direction; êi
0 is the unit polarization vector

of the incident wave. Since the incident wave is a plane wave, k̂i
0 is

perpendicular to êi
0. We can decompose êi

0 into two perpendicular unit
vectors in the plane perpendicular to the direction of k̂i

0

êi
0 = eh

0 ĥ
(−ki

0z

)
+ ev

0v̂
(−ki

0z

)
(2)

where
eh
0 = êi

0 · ĥ
(−ki

0z

)
, ev

0 = êi
0 · v̂

(−ki
0z

)
(3)
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and

ĥ
(−ki

0z

)
=

k̂i
0 × ẑ∣∣∣k̂i
0 × ẑ

∣∣∣
=

ki
yx̂− ki

xŷ

ki
⊥

,

v̂
(−ki

0z

)
= ĥ

(−ki
0z

)× k̂i
0 =

ki
⊥

k0
ẑ +

k0z

k0ki
⊥

(
ki

xx̂ + ki
yŷ

)
(4)

ĥ(−ki
0z) and v̂

(−ki
0z

)
are the unit vectors of H and V polarized

components of the incident wave. k̂i
0, v̂

(−ki
0z

)
and ĥ

(−ki
0z

)
form

an orthogonal set. The time factor e−jωt is understood.
The electric and magnetic fields at the point r̄ in region m can

be represented as a superposition of up- and down-going orthogonal
polarized waves in spectral domain [7]

Ēm (r̄) =

+∞∫

−∞
dk̄⊥

{[
f+

mhĥm (kmz) + f+
mvv̂m (kmz)

]
eikmzz

+
[
fmh−ĥm(−kmz) + fmv−v̂m (−kmz)

]
e−ikmzz

}
eik̄⊥·r̄⊥(5)

H̄m (r̄) =
1

ηm

+∞∫

−∞
dk̄⊥

{[
−f+

mhv̂m (kmz) + f+
mvĥm (kmz)

]
eikmzz

+
[
−f−mhv̂−m (−kmz) + f−mvĥ

−
m (−kmz)

]
e−ikmzz

}
eik̄⊥·r̄⊥ (6)

where dk̄⊥ = dkxdky; the superscripts + and − denote the up- and
down-going waves respectively; f±mh and f±mv denote the unknown
amplitudes of the up- and down-going waves of H and V polarizations
in region m; ηm is the wave impedance of region m, m = 0, 1, . . . , n.
The unit vectors ĥ(±kmz) and v̂(±kmz) are defined as

ĥ (±kmz) =
kyx̂− kxŷ

ki
⊥

, v̂ (±kmz) =
k⊥
km

ẑ ∓ kmz

kmk⊥
(kxx̂ + kyŷ) (7)

where kmz =
√

k2
m − k2

x − k2
y. The unknown amplitudes will be

discussed in Section 3.
The boundary conditions at the mth interface satisfy

n̂m×
[
Ēm (r̄)− Ēm+1 (r̄)

]
m

= 0, n̂m×
[
H̄m (r̄)− H̄m+1 (r̄)

]
m

= 0 (8)
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m = 0, 1, . . . , n− 1, n̂m denotes the normal vector of the mth interface

n̂0 =
−gxx̂− gyŷ + ẑ√

1 + g2
x + g2

y

, n̂m = ẑ (9)

where gx = ∂g (x, y) /∂x and gy = ∂g (x, y) /∂y, m = 1, 2, . . . , n − 1.
Here we have assumed function g (x, y) is derivable.

3. ANALYSES

In this section, we will determine the unknown amplitudes f±mh
and f±mv by the boundary conditions and SPM. There are 4(n + 1)
unknown amplitudes which need to be solved. First, we determine the
amplitudes of the incident wave. Then, we find the relationship of the
unknown amplitudes of up- and down-going waves in the subsurface
structure through the boundary conditions for the planar interfaces.
Second, we solve the amplitudes of scattering waves by employing
boundary condition for the rough surfaces and SPM. According to field
expansions, we express the boundary conditions in spectral domain,
and we obtain a linear equation set about the unknown amplitude
with week form. Next, we expand the unknown amplitudes into
perturbation series. The expansion coefficients of each order can be
solved from the equation set after an order-matching procedure. As
a result, the expansion coefficients of zeroth-, first- and second-order
are derived. We then estimate the scattering field in the far-field zone
using the zeroth-, first- and second-order approximation respectively.
At last, we calculate the expression of the bistatic scattering coefficient
of the layered structure.

3.1. The Amplitudes of the Incident Wave

We begin with the amplitude of the down-going wave in region 0. In
region 0, the down-going wave is the incident wave. The amplitudes
of the down-going wave f−0h and f−0v are found immediately from the
Fourier transform of the incident wave (1).

f−0h = eh
0δ

(
k̄⊥ − k̄i

⊥
)
, f−0v = ev

0δ
(
k̄⊥ − k̄i

⊥
)

(10)

where δ is the Dirac function.

3.2. The Amplitudes of the Waves in the Subsurface
Structure

Since the interfaces of the subsurface structure are planes (see Fig. 1),
the Fresnel law holds at each interface, and the amplitudes of up- and



Progress In Electromagnetics Research, PIER 96, 2009 43

down-going waves in region 1 to n are not independent. In region 1 we
have

f+
1h = Rh

1e2ik1zd1f−1h, f+
1v = Rv

1e
2ik1zd1f−1v (11)

where Rh
1 and Rv

1 are the generalized reflection coefficients [8] for
H and V polarizations at the 1st interface. The definition of the
generalized reflection coefficient is presented in Appendix A. Since the
physical parameters of the layered structure are known, the generalized
reflection coefficients can be calculated easily. Further, the amplitudes
of the down-going waves for H and V polarizations in region m
(m = 2, 3, . . . , n) can be represented as functions of f−1h and f−1v

f−mh = T h
1 T h

2 . . . T h
m−1e

ik1z∆1eik2z∆2 . . . eik(m−1)z∆m−1f−1h,

f−mv = T v
1 T v

2 . . . T v
m−1e

ik1z∆1eik2z∆2 . . . eik(m−1)z∆m−1f−1v

(12)

where T h
k and T v

k are the Fresnel transmission coefficients, ∆k =
dk − dk−1, k = 1, 2, . . . , n − 1. The up- and down-going waves in
region m (m = 2, 3, . . . , n− 1) also satisfy

f+
mh = Rh

me2ikmz∆mf−mh, f+
mv = Rv

me2ikmz∆mf−mv (13)

where Rh
m and Rv

m are the generalized reflection coefficients at the
mth interface. Region n is a half space, and no source is located in
this region, so the amplitudes of the up-going waves equal to zero, i.e.,
f+

nh = 0 and f+
nv = 0.

3.3. The Zeroth-, First- and Second-order SPM Solutions of
the Amplitudes of the Scattering Wave

We have determined the exact expressions or the relationships of the
4n unknown amplitudes from the above discussion. The 4 residual
unknown amplitudes f+

0h, f+
0v, f−1h and f−1v are independent variables.

We will deal with those variables using the boundary conditions at
the rough interface. Substituting the field expansion expressions (5)
and (6) into the boundary conditions of the rough interface (8) and
taking into account of (10) and (11), we obtain two linear vector
equations with weak form

n̂0 ×
{[

f+
0hĥ (k0z) + f+

0vv̂ (k0z)
]
eik0zg(r̄⊥)

+
[
eh
0δ

(
k̄⊥ − k̄i

⊥
)
ĥ (−k0z) + ev

0δ
(
k̄⊥ − k̄i

⊥
)
v̂ (−k0z)

]
e−ik0zg(r̄⊥)

}

= n̂0×
{[

f−1hR
h
1e2ik1zd1 ĥ (k1z)+f−1vR

v
1e

2ik1zd1 v̂ (k1z)
]
eik1zg(r̄⊥)

+
[
f−1hĥ (−k1z) + f−1vv̂ (−k1z)

]
e−ik1zg(r̄⊥)

}
(14)
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n̂0 × 1
η0

{[
−f+

0hv̂ (k0z) + f+
0vĥ (k0z)

]
eik0zg(r̄⊥)

+
[
−eh

0δ
(
k̄⊥ − k̄i

⊥
)
v̂ (−k0z) + ev

0δ
(
k̄⊥ − k̄i

⊥
)
ĥ (−k0z)

]
e−ik0zg(r̄⊥)

}

= n̂0× 1
η1

{[
−Rh

1e2ik1zd1f−1hv̂ (k1z)+Rv
1e

2ik1zd1f−1vĥ (k1z)
]
eik1zg(r̄⊥)

+
[
−f−1hv̂ (−k1z) + f−1vĥ (−k1z)

]
e−ik1zg(r̄⊥)

}
(15)

(14) and (15) are the boundary conditions in spectral domain and can
be written as six linear scalar equations for x, y and z directions. Note
that the linear scalar equations for x and y directions are independent,
and they are listed in Appendix B. The linear scalar equations for z
directions are not independent, and we will not present them here.

The equation set (14) and (15) can be solved directly, but the
solution is hard to be used in further calculations such as estimating
the scattering fields and bistatic scattering coefficients of the scattering
problem. An alternative way is to apply the SPM to carry out an
approximated solution of the equation set. We expand the unknown
amplitudes f+

0h, f+
0v, f−1h and f−1v into perturbation series

f+
0h,v =

+∞∑

l=0

f
+(l)
0h,v , f−1h,v =

+∞∑

l=0

f
−(l)
1h,v (16)

where the superscript (l) represents the order of the expansion
coefficient and expands the exponential items into the Taylor series

e±ikmzg(x,y) =
+∞∑

l=0

1
l!

[±ikmzg (x, y)]l (17)

where m = 0 or 1. We then determine the unknown expansion
coefficient of each order through the equation set. Under the
assumption of small roughness, the first several terms of the expansion
give good approximation to solution of the problem. In the following,
we will derive the zeroth-, first-, and second-order perturbation
solutions of the problem.

Substituting (16) and (17) into (14) and (15), balancing the
zeroth-order terms of the equation set, a matrix equation is obtained

Ax0 = b0 (18)
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where

A=




kx
k⊥

kyk0z

k⊥k0
− kx

k⊥

(
1 + Rh

1e2ik1zd
) kyk1z

k⊥k1

(
1−Rv

1e
2ik1zd

)

ky

k⊥
−kxk0z

k⊥k0
− ky

k⊥

(
1 + Rh

1e2ik1zd
) −kxk1z

k⊥k1

(
1−Rv

1e
2ik1zd

)

− kyk0z

η0k⊥k0

kx
η0k⊥

− kyk1z

η1k⊥k1

(
1−Rh

1e2ik1zd
) − kx

k⊥η1

(
1+Rv

1e
2ik1zd

)

kxk0z
η0k⊥k0

ky

η0k⊥
kxk1z

η1k⊥k1

(
1−Rh

1e2ik1zd
) − ky

k⊥η1

(
1+Rv

1e
2ik1zd

)



(19)

x0 =




f
+(0)
0h

f
+(0)
0v

f
−(0)
1h

f
−(0)
1v




, b0 =




−
(

kx
k⊥

eh
0 − kyk0z

k⊥k0
ev
0

)
δ
(
k̄⊥ − k̄i

⊥
)

−
(

ky

k⊥
eh
0 + kxk0z

k⊥k0
ev
0

)
δ
(
k̄⊥ − k̄i

⊥
)

− 1
η0

(
kyk0z

k⊥k0
eh
0 + kx

k⊥
ev
0

)
δ
(
k̄⊥ − k̄i

⊥
)

− 1
η0

(
−kxk0z

k⊥k0
eh
0 + ky

k⊥
ev
0

)
δ
(
k̄⊥ − k̄i

⊥
)




(20)

The solution of (18) is

f
+(0)
0h = Rh

0eh
0δ

(
k̄⊥ − k̄i

⊥
)
, f

+(0)
0v = Rv

0e
v
0δ

(
k̄⊥ − k̄i

⊥
)

f
−(0)
1h = Th

0eh
0δ

(
k̄⊥ − k̄i

⊥
)
, f

−(0)
1h = Tv

0e
v
0δ

(
k̄⊥ − k̄i

⊥
) (21)

where

Th
0 =

T h
0

1 + Rh
0R

h
1ei2k1z∆1

, Tv
0 =

η1

η0

T v
0

1 + Rv
0R

v
1e

i2k1z∆1
(22)

are the total transmission coefficients at the zeroth interface. The
zeroth-order solution in (21) is the generalized reflection coefficients
of the layered structure with planar surfaces and total transmission
coefficients of the planar surfaces. Note that the zeroth-order solution
is the coherent component of the scattering problem.

Matching the first-order terms of the equation set, a matrix
equation for the first-order terms is established

Ax1 = b1 (23)

where A is defined by (19) and

x1 =
[

f
+(1)
0h f

+(1)
0v f

−(1)
1h f

−(1)
1v

]T
, b1 = [ b11 b12 b13 b14 ]T

(24)
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The superscript T denotes the operator of matrix transpose. The
expression of b1 is presented in Appendix C. The first-order solution
is

f
+(1)
0h,v =

[
f̃

+(1)
0pp + f̃

+(1)
0pq

] [
iG

(
k̄⊥ − k̄i

⊥
)]

,

f
−(1)
1h,v =

[
f̃
−(1)
1pp + f̃

−(1)
1pq

] [
iG

(
k̄⊥ − k̄i

⊥
)] (25)

where p, q = H,V and p 6= q. The expressions of f̃
+(1)
0pp , f̃

+(1)
0pq , f̃

−(1)
1pp

and f̃
−(1)
1pq are amplitudes for co-polarized and cross-polarized waves,

and they are presented in Appendix D. G
(
k̄⊥

)
is the Fourier transform

of the surface height profile g (x, y)

G
(
k̄⊥

)
=

∫ +∞

−∞

∫ +∞

−∞
dxdy

[
g (x, y) e−i(kxx+kyy)

]
(26)

The above results for the zeroth- and first-order solutions correspond
to expressions in [6]. The first-order solution of the scattering
problem stands for the contribution of single scattering component
of the structure, which contains the primary incoherent scattering
component. The mechanism of single scattering is illustrated in Fig. 2.

Next, we determine the second-order terms through the equation
set. The matrix equation for the second-order solution can be written
as

Ax2 = b2 (27)

Figure 2. Illustration of single scattering.
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Figure 3. Illustration of double-scattering.

where

x2 =
[

f
+(2)
0h f

+(2)
0v f

−(2)
1h f

−(2)
1v

]T
, b2 = [ b21 b22 b23 b24 ]T

(28)
The expression of b2 is presented in Appendix C. Because we are
concerned about the scattering fields for linear polarizations HH, VH,
HV and VV in region 0, we only calculate f

+(2)
0hh , f

+(2)
0vh , f

+(2)
0hv and f

+(2)
0vv .

The solution is

f
+(2)
0pq =

+∞∫

−∞
dκ̄⊥G

(
k̄⊥ − κ̄⊥

)
G

(
κ̄⊥ − k̄i

⊥
)
f̃

+(2)
0pq (κ̄⊥) (29)

where p, q = H, V , κ̄⊥ is a dummy variable, dκ̄⊥ = dκxdκy. The
expressions of f

+(2)
0pq are presented in Appendix D.

It is easy to validate that the degraded forms of (29) for the simple
case of single rough surfaces coincide with the result on [12]. The
second-order solutions contribute to the double-bounce component of
the layered structure, which is illustrated in Fig. 3. The mechanism
of the double-bounce scattering makes the primary contribution to
the cross-polarized component especially in the case of backscattering.
Since the generalized reflection coefficients are involved in the zeroth-,
first- and second-order solutions, the results can be used to deal with
the structure with an arbitrary number of layers.

3.4. The Scattering Fields and the Bistatic Scattering
Coefficients

The scattering field Ē0 (r̄) in region 0 can be approximated as

Ē0 (r̄) ' Ē
(0)
0 (r̄) + Ē

(1)
0 (r̄) + Ē

(2)
0 (r̄) (30)
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where Ē
(0)
0 (r̄), Ē

(1)
0 (r̄) and Ē

(2)
0 (r̄) are scattering field of the zeroth-,

first- and second-order SPM solutions respectively

Ē
(0)
0 =Rhi

0 eh
0 ĥ

(−ki
0z

)
+ Rvi

0 ev
0v̂

(−ki
0z

)
(31)

Ē0(1) (r̄)=

+∞∫

−∞
dk̄⊥

[
f

+(1)
0h ĥ0 (k0z) + f

+(1)
0v v̂0 (k0z)

]
ei(k0zz+k̄⊥·r̄⊥) (32)

Ē
(2)
0 (r̄)=

+∞∫

−∞
dk̄⊥

[
f

+(2)
0h ĥ0 (k0z) + f

+(2)
0v v̂0 (k0z)

]
ei(k0zz+k̄⊥·r̄⊥) (33)

Note that the zeroth-order field Ē
(0)
0 (r̄) exists only in the specular

direction.
In the far-field zone, the scattering field can be estimated by the

stationary phase method. We have

E
(l)
0pq (r̄) ' −eik0r

r
i2πk0 cos θf

+(l)
0pq eq

0 (34)

where l = 1, 2, p, q = H,V . θ is the angle between the scattering wave
and z axis.

The bistatic scattering coefficient is defined as the ratio of the
scattering power of polarization p per unit solid angle in the scattering
direction to the scattering power averaged over 4π radians

γpq

(
k̄⊥k̄i

⊥
)

= lim
A→+∞
r→+∞

4πr2
〈∣∣Ē0 (r̄) · p̂∣∣2

〉

A |eq
0|2 cos θi

(35)

where k̄i
⊥ and k̄⊥ denote the directions of the incident wave and

scattering wave respectively; A is the area illustrated by the incident
wave; θi is the angle between the incident wave and z axis; the symbol
〈〉 denotes the operator of ensemble average. Since g (x, y) is a Gaussian
random process, the Fourier transformation G

(
k̄⊥

)
is also Gaussian.

For a jointly Gaussian random vector {G1, G2, G3, G4}, the following
identities hold

〈G1G2G3〉 = 0, 〈G1G2G3G4〉 = 〈G1G2〉+ 〈G2G3〉+ 〈G3G4〉+ 〈G1G4〉
(36)

The ensemble average of the incoherent scattering field can be written
as

〈
Ē0 (r̄1) Ē0 (r̄2)

∗〉 '
〈
Ē

(1)
0 (r̄1) Ē

(1)
0 (r̄2)

∗
〉

+
〈
Ē

(2)
0 (r̄1) Ē

(2)
0 (r̄2)

∗
〉

(37)
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Therefore the bistatic scattering coefficient can be approximate by [12]

γpq

(
k̄⊥, k̄i

⊥
) ' γ(1)

pq

(
k̄⊥, k̄i

⊥
)

+ γ(2)
pq

(
k̄⊥, k̄i

⊥
)

(38)

where

γ(1)
pq

(
k̄⊥, k̄i

⊥
)

=
4πk2

0 cos2 θ

cos θi

∣∣∣f̃+(1)
0pq

∣∣∣
2
W

(
k̄⊥ − k̄i

⊥
)

(39)

γ(2)
pq

(
k̄⊥, k̄i

⊥
)

=
4πk2

0 cos2 θ

cos θi

+∞∫

−∞
dκ̄⊥W

(
k̄⊥ − κ̄⊥

)
W

(
κ̄⊥ − k̄i

⊥
)

f̃
+(2)
0pq (κ̄⊥)

[
f̃

+(2)
0pq (κ̄⊥) + f̃

+(2)
0pq

(
k̄⊥ − κ̄⊥ + k̄i

⊥
)]∗

(40)

∗ is the operator of conjugation and

W
(
k̄⊥

)
= lim

A→∞

〈∣∣G (
k̄⊥

)∣∣2
〉

A
(41)

is the spectral density function of the height profile g (x, y).

4. NUMERICAL SAMPLES

The expressions of the zeroth- and first-order solutions derived above
coincide with the result in [6]. To validate the expressions of the
bistatic scattering coefficients of the second-order SPM solution, we
reproduce the curve of 2-2 term of Figure 3 in [13] for the simple case
of single rough surfaces, which is shown in Fig. 4. The correlation

Figure 4. Reproducing the result on [13].
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function of the rough surfaces is assumed to be a Gaussian form

ρ (r̄⊥) = e−|r̄⊥|
2/l2 (42)

and the corresponding spectral density function is

W
(
k̄⊥

)
=

h2l2

4π
e−|k̄⊥|

2
l2/4 (43)

Without loss of generality, we consider a two-layer structure in
the following discussion. Fig. 5(a) exhibits the difference of the

(a) (b)

Figure 5. Backscattering from a two-layer structure and a one-layer
structure using the first and the combination of the first and second
orders of the SPM solutions.

(a) (b)

Figure 6. Backscattering from two-layer structures with different
roughness.
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(c)

(a) (b)

Figure 7. Backscattering from two-layer structures with different ε1

and d1.

VV polarized backscattering from the two-layer structure between
the first- and the combination of the first- and second-order SPM
solutions. Under the roughness of Fig. 5, the contribution of the
double-bounce component is considerable for VV polarization. We
see as the incident angle increases, the double-bounce component
provides more co-polarized backscattering power than the single-
scattering component. Compared with Fig. 5(b), the contribution of
the double-bounce component in a layered structure (Fig. 5(a)) is more
than the contribution of double-bounce component in a single layer
structure, especially in the case of small incident angle. However,
as the roughness increases, i.e., the rms height h becomes large,
and the correlation length l becomes small, the backscattering power
increases, and the contribution of the single-scattering component is
dominating, which is illustrated in Figs. 6(a) and (b). The increase
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(c) (d)

(a) (b)

Figure 8. Ratio of the amplitude of the coherent reflected wave from
a two-layer structure and a one-layer structure with different roughness
and the incident wave of VV polarization.

in the surface roughness also results in a significant enhancement in
the cross-polarized component. Figs. 7(a) and (b) show when the
dielectric constant of the upper layer changes, the backscattering power
changes consequently. The cross-polarized component is more sensitive
to the variation of dielectric constant than co-polarized one. Fig. 7(c)
shows the oscillation behavior of the backscattering from a two-layer
structure. It is noted that the oscillation behavior of the cross-polarized
component in Fig. 7(c) is more significant than co-polarized one.

Figure 8 shows the ratio of the amplitude of coherent reflected
wave from a two-layer structure with different roughness and incident
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wave. When the roughness of the surfaces is small, the ratio is close to
the reflection coefficient of the layered structure with a planar surface.
The amplitude of the ratio is less than the reflection coefficient, because
a part of the incident power is scattered into different directions by
the rough surfaces. When the incident angle is close to 90 degree,
the ratio is more than the reflection coefficient due to the contribution
introduced by the double-bounce component. The Brewster-like effect
of the layered structure is also observed in Fig. 8. The shift of the
Brewster angle is shown clearly in Fig. 8(b). As the roughness of the
surfaces increases, the shift of the Brewster angle is positive. For a
one-layer structure, however, according to the perturbation technique,
the shift is always negative [14], which is shown in Figs. 8(c) and (d).

5. CONCLUSION

A theoretical model of the scattering from a three-dimensional
arbitrary layered media with slightly infinite rough surfaces based on
the SPM is investigated in this work. The expressions of the zeroth-
, first- and second-order SPM solutions for the layered structure are
derived, in which the second-order solution is the primary contribution
of this work. The expressions of the second-order scattering field and
corresponding bistatic scattering coefficient result in integral forms.
However, the integral for variable κ̄⊥ is well behaved, so numerical
integration can be carried out without difficulty. The expressions
are validated by comparing with the known results. According to
the numerical results, the cross-polarized backscattering component
is more sensitive to the variation of the physical parameters of the
layered structure than the co-polarized backscattering component. The
Brewster-like effect and shift of the reflection coefficient introduced by
the second-order SPM solution are also observed.

The contributions of high-order SPM solutions for the layered
structure are still unknown. It can be predicted when the number of
rough interfaces of a layered structure is more than one, the coupling
effect of rough interfaces will be enhanced, and the contribution of
high-order terms will increase. Our future work will focus on the
second and higher order SPM solutions for a layered structure with
arbitrary number of rough interfaces and the numerical simulations of
the scattering from a layered structure with rough interfaces.
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APPENDIX A. THE GENERALIZED REFLECTION
COEFFICIENTS

The Fresnel reflection and transmission coefficients for H and V
polarized waves at the mth interface are defined as follows [8]

Rh
m =

kmz − k(m+1)z

kmz + k(m+1)z
, Rv

m =
ε(m+1)zkmz − εmzk(m+1)z

ε(m+1)zkmz + εmzk(m+1)z
(A1)

T h
m =

2kmz

kmz + k(m+1)z
, T v

m =
2ε(m+1)zkmz

ε(m+1)zkmz + εmzk(m+1)z
(A2)

where m = 0, 1, . . . , n − 1. The Fresnel reflection and transmission
coefficients satisfy T p

m = 1 + Rp
m with p = H or V .

The generalized reflection coefficients for H and V polarized waves
at the mth interface have the recursive relations [8]

Rh
m =

Rh
m + Rh

m+1e
i2k(m+1)z∆m+1

1 + Rh
mRh

m+1e
i2k(m+1)z∆m+1

,

Rv
m =

Rv
m + Rv

m+1e
i2k(m+1)z∆m+1

1 + Rv
mRv

m+1e
i2k(m+1)z∆m+1

(A3)

Th
m =

T h
m

1 + Rh
mRh

m+1e
i2k(m+1)z∆m+1

,

Tv
m =

ηm+1

ηm

T v
m

1 + Rv
mRv

m+1e
i2k(m+1)z∆m+1

(A4)

where ∆m+1 = dm+1 − dm, m = 0, 1, . . . , n − 1 with Rp
n = Rp

n p = H
or V .

APPENDIX B. THE EXPRESSION OF THE SCALAR
EQUATION SET

Substituting (9) into (14) and (15) and changing the vector equations
into scalar equations, we have


 kx

k⊥
f+
0h +

(
−∂g

∂yk2
⊥ + k⊥k0z

)

k⊥k0
f+
0v


 eik0zg(r̄⊥)
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+


 kx

k⊥
eh
0δ

(
k̄⊥ − k̄i

⊥
)
+

(
−∂g

∂yk2
⊥ − kyk0z

)

k⊥k0
ev
0δ

(
k̄⊥ − k̄i

⊥
)

 e−ik0zg(r̄⊥)

=


 kx

k⊥
f−1hR

h
1e2ik1zd1 +

(
−∂g

∂yk2
⊥ + kyk1z

)

k⊥k1
f−1vR

v
1e

2ik1zd1


 eik1zg(r̄⊥)

+


 kx

k⊥
f−1h +

(
−∂g

∂yk2
⊥ − kyk1z

)

k⊥k1
f−1v


 e−ik1zg(r̄⊥) (B1)


 ky

k⊥
f+
0h +

(
∂g
∂xk2

⊥ − kxk0z

)

k⊥k0
f+
0v


 eik0zg(r̄⊥)

+


 ky

k⊥
eh
0δ

(
k̄⊥ − k̄i

⊥
)

+

(
∂g
∂xk2

⊥ + kxk0z

)

k⊥k0
ev
0δ

(
k̄⊥ − k̄i

⊥
)

 e−ik0zg(r̄⊥)

=


 ky

k⊥
f−1hR

h
1e2ik1zd1 +

(
∂g
∂xk2

⊥ − kxk1z

)

k⊥k1
f−1vR

v
1e

2ik1zd1


 eik1zg(r̄⊥)

+


ky

k⊥
f−1h+

(
∂g
∂xk2

⊥ + kxk1z

)

k⊥k1
f−1v


 e−ik1zg(r̄⊥) (B2)

1
η0






−

(
−∂g

∂yk2
⊥ + kyk0z

)

k⊥k0
f+
0h +

kx

k⊥
f+
0v


 eik0zg(r̄⊥)

+



(

∂g
∂yk2

⊥ + kyk0z

)

k⊥k0
eh
0δ

(
k̄⊥−k̄i

⊥
)
+

kx

k⊥
ev
0δ

(
k̄⊥ − k̄i

⊥
)

 e−ik0zg(r̄⊥)





=
1
η1






−

(
−∂g

∂yk2
⊥ + kyk1z

)

k⊥k1
f−1hR

h
1e2ik1zd1

+
kx

k⊥
f−1vR

v
1e

2ik1zd1

]
eik1zg(r̄⊥)

+




(
∂g
∂yk2

⊥ + kyk1z

)

k⊥k1
f−1h +

kx

k⊥
f−1v


 e−ik1zg(r̄⊥)



 (B3)
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1
η0






−

(
∂g
∂xk2

⊥ − kxk0z

)

k⊥k0
f+
0h+

ky

k⊥
f+
0v


 eik0zg(r̄⊥)

+


−

(
∂g
∂xk2

⊥ + kxk0z

)

k⊥k0
eh
0δ

(
k̄⊥ − k̄i

⊥
)
+

ky

k⊥
ev
0δ

(
k̄⊥ − k̄i

⊥
)

e−ik0zg(r̄⊥)





=
1
η1






−

(
∂g
∂xk2

⊥ − kxk1z

)

k⊥k1
f−1hR

h
1e2ik1zd1 +

ky

k⊥
f−1vR

v
1e

2ik1zd1


 eik1zg(r̄⊥)

+


−

(
∂g
∂xk2

⊥ + kxk1z

)

k⊥k1
f−1h+

ky

k⊥
f−1v


 e−ik1zg(r̄⊥)



 (B4)

The linear equation set has four independent equations and four
unknown variables, thus the equation set has a unique solution.

APPENDIX C. THE EXPRESSIONS OF THE VECTORS
b1 AND b2

The complete expression of b1 is

b11 =
[
iG

(
k̄⊥ − k̄i

⊥
)]


ki

⊥
k0

(
1− ε0

ε1

) T vi
0

(
1 + Rvi

1 e2iki
1zd1

)

1 + Rvi
0 Rvi

1 e2iki
1zd1

kye
v
0


(C1)

b12 =
[
iG

(
k̄⊥−k̄i

⊥
)]


ki

⊥
k0

(
1− ε0

ε1

) T vi
0

(
1 + Rvi

1 e2iki
1zd1

)

1 + Rvi
0 Rvi

1 e2iki
1zd1

(−kx) ev
0


(C2)

b13 =
[
iG

(
k̄⊥ − k̄i

⊥
)]


 ki

y

ki
⊥

(
k0

η0
− k1

η1

) T hi
0

(
1 + Rhi

1 e2iki
1zd1

)

1 + Rhi
0 Rhi

1 e2iki
1zd1

eh
0

+
ki

xki
0z

ki
⊥

1
η0

(ε0 − ε1)
ε0

(
1−Rvi

0

) (
1−Rvi

1 e2ik1zid1
)

1 + Rvi
0 Rvi

1 e2ik1zid1
ev
0

]
(C3)

b14 =
[
iG

(
k̄⊥ − k̄i

⊥
)]


− ki

x

ki
⊥

(
k0

η0
− k1

η1

) T hi
0

(
1 + Rhi

1 e2iki
1zd1

)

1 + Rhi
0 Rhi

1 e2iki
1zd1

eh
0
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+
ki

yk
i
0z

ki
⊥

1
η0

(ε0 − ε1)
ε0

(
1−Rvi

0

)
(
1−Rvi

1 e2iki
1zd1

)

1 + Rvi
0 Rvi

1 e2iki
1zd1

ev
0


 (C4)

The complete expression of b2 is

b21=
∫

dκ̄⊥F
(
k̄⊥ − κ̄⊥

)
F

(
κ̄⊥ − k̄i

⊥
)×

{[
κxκ0z

κ⊥
f̃

+(1)
0h (κ̄⊥)

+
κyκ

2
0z

κ⊥k0
f̃

+(1)
0v (κ̄⊥) +

κxκ1z

κ⊥

(
1−Rhκ

1 e2iκ1zd1

)
f̃
−(1)
1h (κ̄⊥)

−κyκ
2
1z

κ⊥k1

(
1 + Rvκ

1 e2iκ1zd1

)
f̃
−(1)
1v (κ̄⊥)

]
+ (ky − κy)

[
−κ⊥

k0
f̃

+(1)
0v (κ̄⊥)
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κ⊥
k1

(
1 + Rvκ

1 e2iκ1zd1

)
f̃
−(1)
1v (κ̄⊥)

]
+

1
2

[
ki

xki
0z

2

ki
⊥

Rhi
0 eh

0 +
ki

yk
i
0z

3

ki
⊥k0
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0 ev

0

−ki
xki

1z
2

ki
⊥

(
1 + Rhi

1 e2ik1zid
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T hi
0 eh

0 +
ki
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i
1z

3

ki
⊥k1

(
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1 e2ik1zid1

)
T hi

0 ev
0

+
ki

xki
0z

2

ki
⊥
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0 −

ki
yk

i
0z

3

ki
⊥k0

ev
0

]
+ (ky − κy)

[
−ki
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0z

k0
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0 ev
0

−ki
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k1

(
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1 e2ik1zid1
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T hi

0 ev
0 +

ki
⊥ki

0z

k0
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0
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(C5)

b22 =
∫

dκ̄⊥F
(
k̄⊥ − κ̄⊥

)
F

(
κ̄⊥ − k̄i

⊥
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κyκ0z
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−κxκ2
0z

κ⊥k0
f̃

+(1)
0v (κ̄⊥ +
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⊥
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⊥
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b23 =
∫

dκ̄⊥F
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b24 =
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where the parameters with superscript κ are functions of the dummy
variable κ̄⊥.
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APPENDIX D. THE DETAIL EXPRESSIONS OF THE
FIRST- AND SECOND-ORDER SPM SOLUTIONS

The detail expressions of f̃
+(1)
0pp , f̃

+(1)
0pq , f̃

−(1)
1pp and f̃

−(1)
1pq are
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+(1)
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)
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0

)(
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)
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0 (D1)

f̃
+(1)
0hv =
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)
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k0 (ε1 − ε0)
2ε0

sin
(
φ− φi

) (
1 + Rhi

0

)
(1−Rv

0) eh
0 (D3)

f̃
+(1)
0vv =

k0 (ε1 − ε0)
2ε1

sin θ sin θi

cos θ

(
1 + Rvi

0

)
(1 + Rv

0) ev
0

−k0 (ε1 − ε0)
2ε0

cos
(
φ− φi

)
cos θi

(
1−Rvi

0

)
(1−Rv

0) ev
0 (D4)

f̃
+(1)
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0 eh
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where
(
θi, φi

)
and (θ, φ) are the incident and scattering azimuth angles

respectively.
The detailed expressions of f

+(2)
0pq , p, q = H,V are

f
+(2)
0pq =

+∞∫

−∞
dκ̄⊥G

(
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f̃
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0pq (κ̄⊥) = c̃pq + d̃pq (κ̄⊥) (D10)

where
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1
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The parameters with superscript κ in the above expressions refer to the
dummy variable κ̄⊥. We see the expressions of f̃

+(2)
0pq (κ̄⊥), f̃

+(2)
0pq (κ̄⊥),

f̃
+(2)
0pq (κ̄⊥) and f̃

+(2)
0pq (κ̄⊥) exhibit symmetry of reciprocity.
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