Vol. 16
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-06
Electromagnetic Source Equivalence and Extension of the Complex Image Method for Geophysical Applications
By
Progress In Electromagnetics Research B, Vol. 16, 57-84, 2009
Abstract
In this work, source equivalence and computation of the reflected (induced) electromagnetic field in geophysical situations are studied. It is shown that the application of Huygens' principle allows for full generalization of Fukushima's equivalence theorem that applies only for magnetic field. The source equivalence is revisited for a vertical line current element, and it is shown that the equivalent charge required to replace the original source by a planar equivalent source together with the surface charge associated with the reflected field generates a purely vertical total electric field on the ground. Consequently, if the magnetic field and horizontal components of the total electric field on the ground are of interest, only equivalent currents need to be considered. The classical Complex Image Method (CIM) is derived from exact image theory for planar impedance surfaces. The classical CIM is extended by considering a divergence-free source current that may have components also perpendicular to the ground plane. The extension is seen to generate a complex image charge not present in the classical CIM. Further, a generalized application of the extended CIM to geophysical situations having divergence-free volume source currents is introduced. The application involves decomposition of the source into line current elements and rotations, translations and reflections of the electromagnetic field expressions associated with each element. The validity of the new approach is verified for an example of external current system and ground model setup by means of comparisons to results obtained from exact formulation by~[18].
Citation
Antti Pulkkinen, Ari Viljanen, Risto Pirjola, and Lasse Häkkinen, "Electromagnetic Source Equivalence and Extension of the Complex Image Method for Geophysical Applications," Progress In Electromagnetics Research B, Vol. 16, 57-84, 2009.
doi:10.2528/PIERB09050902
References

1. Thomson, W., Reprint of Papers on Electrostatics and Magnetism, 2nd Ed., Macmillan & Co., 1884.

2. Taraldsen, G., "The complex image method," Wave Motion, Vol. 43, 91-97, 2005.
doi:10.1016/j.wavemoti.2005.07.001

3. Wait, J. R., "Image theory of a quasi-static magnetic dipole over a dissipative half-space," Electronics Letters, Vol. 5, 281-282, 1969.
doi:10.1049/el:19690214

4. Wait, J. R. and K. P. Spies, "On the image representation of the quasistatic fields of a line current source above the ground," Can. J. Phys., Vol. 47, 2731-2733, 1969.

5. Wait, J. R., "Complex image theory-revisited," IEEE Antennas Propagat. Mag., Vol. 33, No. 4, 27-29, 1991.
doi:10.1109/74.84529

6. Lindell, I. V. and E. Alanen, "Exact image theory for the Sommerfeld half-space problem, Part 1: Vertical magnetic dipole," IEEE Transactions on Antennas and Propagation, Vol. 32, 126-133, 1984.
doi:10.1109/TAP.1984.1143278

7. Lindell, I. V. and E. Alanen, "Exact image theory for the Sommerfeld half-space problem, Part 2: Vertical electric dipole," IEEE Transactions on Antennas and Propagation, Vol. 32, 841-847, 1984.
doi:10.1109/TAP.1984.1143431

8. Lindell, I. V. and E. Alanen, "Exact image theory for the Sommerfeld half-space problem, Part 3: General formulation," IEEE Transactions on Antennas and Propagation, Vol. 32, 1027-1032, 1984.
doi:10.1109/TAP.1984.1143204

9. Deschamps, G. A., "Gaussian beam as a bundle of complex rays," Electronics Letters, Vol. 7, No. 23, 684-685, 1971.
doi:10.1049/el:19710467

10. Madden, T. M. and R. L. Mackie, "Three-dimensional magnetotelluric modelling and inversion," Proceedings of the IEEE, Vol. 77, No. 2, 318-333, 1989.
doi:10.1109/5.18628

11. Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and O. G. Newman, "Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons," Geophysics, Vol. 67, No. 2, 413-426, 2002.
doi:10.1190/1.1468601

12. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended fdtd method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507

13. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5/6, 785-798, 2009.
doi:10.1163/156939309788019822

14. Viljanen, A., O. Amm, and R. Pirjola, "Modeling geomagnetically induced currents during different ionospheric situations," J. Geophys. Res., Vol. 104, No. A12, 28059-28072, 10.1029/1999JA900337, 1999.
doi:10.1029/1999JA900337

15. Pulkkinen, A., M. Hesse, M. Kuznetsova, and L. Rastatter, "First-principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth," Annales Geophysicae, Vol. 25, 881-893, 2007.

16. Thomson, D. J. and J. T. Weaver, "The complex image approximation for induction in a multilayered Earth," J. Geophys. Res., Vol. 80, 123-129, 1975.
doi:10.1029/JA080i001p00123

17. Pirjola, R. and A. Viljanen, "Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length," Annales Geophysicae, Vol. 16, 1434-1444, 1998.
doi:10.1007/s00585-998-1434-6

18. Hakkinen, L. and R. Pirjola, "Calculation of electric and magnetic fields due to an electrojet current system above a layered earth," Geophysica, Vol. 22, No. 1--2, 31-44, 1986.

19. Fukushima, N., "Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform conductivity ionosphere," Rep. Ionos. Space Res. Jpn., Vol. 30, 35-40, 1976.

20. Lindell, I. V., J. J. Hanninen, and R. Pirjola, "Wait's complex-image principle generalized to arbitrary sources," IEEE Transactions on Antennas and Propagation, Vol. 48, 1618-1624, 2000.
doi:10.1109/8.899678

21. Pulkkinen, A., R. Pirjola, and A. Viljanen, "Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems," Earth, Planets and Space, Vol. 99, 999-1006, 2007.

22. Boteler, D. H. and R. J. Pirjola, "The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet," Geophys. J. Int., Vol. 132, No. 1, 31-40, 1998.
doi:10.1046/j.1365-246x.1998.00388.x

23. Lindell, I., "Huygens' principle in electromagnetics," IEE Proc.-Sci. Meas. Technol., Vol. 143, No. 2, 103-105, 1996.
doi:10.1049/ip-smt:19960218

24. Lindell, I., Methods for Electromagnetic Field Analysis, Oxford University Press, 1995.

25. Mayes, P. E., "The equivalence of electric and magnetic sources," IRE Transactions on Ant. Propag., Vol. 6, 295-296, 1958.
doi:10.1109/TAP.1958.1144585

26. Dmitriev, V. I. and M. N. Berdichevsky, "The fundamental model of magnetotelluric sounding," Proc. IEEE, Vol. 67, 1034-1044, 1979.
doi:10.1109/PROC.1979.11386

27. Sarabandi, K., M. D. Casciato, and Il-Sueh Koh, "Efficient calculation of the fields of a dipole radiating above an impedance plane," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1222-1235, 2002.

28. Hanninen, J. J., R. J. Pirjola, and I. V. Lindell, "Application of the exact image theory to studies of ground effects of space weather," Geophys. J. Int., Vol. 151, 534-542, 2002.
doi:10.1046/j.1365-246X.2002.01777.x

29. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773-793, 1996.

30. Post, E. J., Formal Structure of Electromagnetics, General Covariance and Electromagnetics, Interscience Publishers, 1962.

31. Kosmas, L. T. and O. Hess, "Optics: Watch your back," Nature, Vol. 451, 27, 2008.