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Abstract—In this work, source equivalence and computation of the
reflected (induced) electromagnetic field in geophysical situations are
studied. It is shown that the application of Huygens’ principle allows
for full generalization of Fukushima’s equivalence theorem that applies
only for magnetic field. The source equivalence is revisited for a vertical
line current element, and it is shown that the equivalent charge required
to replace the original source by a planar equivalent source together
with the surface charge associated with the reflected field generates
a purely vertical total electric field on the ground. Consequently,
if the magnetic field and horizontal components of the total electric
field on the ground are of interest, only equivalent currents need
to be considered. The classical Complex Image Method (CIM) is
derived from the exact image theory for planar impedance surfaces.
The classical CIM is extended by considering a divergence-free source
current that may have components also perpendicular to the ground
plane. The extension is seen to generate a complex image charge not
present in the classical CIM. Further, a generalized application of the
extended CIM to geophysical situations having divergence-free volume
source currents is introduced. The application involves decomposition
of the source into linear current elements and rotations, translations
and reflections of the electromagnetic field expressions associated with
each element. The validity of the new approach is verified for an
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example of external current system and ground model setup by means
of comparisons to results obtained from exact formulation by [18].

1. INTRODUCTION

The concept of image sources used to replace physical structures
has been known for a long time and is especially well-known in
electrostatics where it was already applied by Lord Kelvin [1, p. 52–
85]. Although it seems that the non-static generalization was first
developed in acoustics [2] (Taraldsen points out that “the method
has a tendency of being rediscovered”), the approximate formulation
of the concept to temporally varying electromagnetic fields resulting
in discrete images at complex depths was introduced to quasi-static
geophysical settings by [3, 4] (see also [5]). The most general form of
the image theory involving continuous distribution of images leading to
exact representation of the fields reflected from planar structures was
developed in a series of Exact Image Theory (EIT) papers by [6–8] (see
also [9]).

The central idea in the application of the images to electromag-
netic induction problems is to replace the medium giving rise to re-
flected fields by an electromagnetic source that is hoped to make the
problem mathematically more tractable or the physical interpreta-
tion of the problem more appealing. The standard approach used
to determine the source involves finding some convenient representa-
tion for the field reflection coefficient mapping the incoming waves to
reflected/outgoing waves; the new representation of the reflection co-
efficient is then used to interpret the reflected field being a certain
distribution of electromagnetic sources, i.e., image sources, within the
medium. The great appeal of the approximate image method for quasi-
static geophysical applications, put forward by [3, 4], is that the usage
of only the first a few terms of the series expansion of the reflection
coefficient leads to a discrete image source, the depth of the source
being a function of the properties of the medium. The discrete image
implies that once the incident electromagnetic field generated by the
original source is known, the reflected field can be obtained simply by
replacing the height of the source by the (complex) depth of the im-
age. Using this approach one avoids analytically usually non-tractable
and numerically very time-consuming integration of the equations as-
sociated with the electromagnetic induction in the ground (for various
numerical techniques as applied to different electromagnetic problems,
see e.g. [10–13]). With simplified source geometries this so-called Com-
plex Image Method (CIM) leads to a great advantage in time-critical
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applications such as space weather forecasts. CIM has been used in
this context in a number of papers investigating the Geomagnetically
Induced Current (GIC) phenomenon (e.g., [14, 15]).

The classical CIM as formulated by [16] is able to handle only
divergence-free source currents confined to a plane. [17] extended the
classical CIM to situations having more general volume currents by
means of source equivalence to be discussed in detail later in the
paper. Importantly, the extension by [17] allows for the treatment
of geomagnetic induction at high-latitudes where the field-aligned
currents can be assumed to be perpendicular to the ionospheric plane,
i.e., the currents are vertical. The main motivation for the present
work comes from the need to model electromagnetic induction (and
GIC) at lower latitudes where the verticality of the field-aligned
currents cannot be assumed. The generalization of CIM to situations
having non-vertical field-aligned currents, studied earlier in non-CIM
context by [18], necessitates both better understanding of the source
equivalence between three-dimensional volume source currents and
two-dimensional surface currents and CIM’s general relation to volume
currents.

It will be shown in this work that the source equivalence can
be understood on a general level by a straightforward application of
Huygens’ principle. Huygens’ principle enables a full generalization of
the well-known Fukushima’s source equivalence theorem [19], which is
applicable only for the magnetic field, for both electric and magnetic
fields and for arbitrary surface geometries. It will be seen that,
in principle, the general source equivalence that considers the total,
instead of only incident, electromagnetic field enables the usage of
the classical CIM with complicated volume currents. However, it will
be shown by deriving the classical and extended CIM from EIT that
the mapping of volume source currents into equivalent sources is, in
fact, not necessary; extended CIM can be used to provide the total
electromagnetic field directly from the known structure of the source
and expressions for the incident field.

Extended CIM was derived from EIT for a homogeneous ground
by [20]. However, in geophysical situations a homogeneous ground
is often not a very good approximation, and the usage of a layered
ground enables a more accurate inclusion of the wide frequency band
associated with the geomagnetic induction (e.g., [21]). Thus, it is of
interest to formulate CIM in a way that allows for the usage of layered
ground structures, as in the works by [22] and [17]. To address this
need, CIM is derived here from EIT expressions formulated for planar
impedance surfaces associated with arbitrary layered conductivity
profiles. The derivation ultimately results in a generalization of the
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classical CIM formulation by [16] and of the extended CIM by [17] by
inclusion of volume currents having arbitrary orientation with respect
to the ionospheric plane.

The practical application of CIM is greatly simplified when the
source is decomposed into geometrically simple elements (such as
loops used by [17]). Here CIM is applied by means of linear element
representation of a divergence-free volume current. The elements
can have arbitrary orientations, and the representation thus requires
transformations between different coordinate systems. The operators
needed to carry out the transformations are also presented. The
generalized element representation combined with the derived extended
CIM expressions will allow a computationally efficient consideration of
the electromagnetic induction in a layered ground, for example, at
latitudes where the verticality of the field-aligned currents cannot be
assumed.

In summary, the following new results will be derived. 1) The
general source equivalence will be applied to geophysical situations
to show that the equivalent charge together with the surface charge
required by the current continuity do not create a horizontal electric
field on the ground. This will validate the use of only equivalent
currents in the extended CIM by [17]. 2) CIM will be derived from EIT,
and the classical CIM will be extended to situations where the source
current can have any orientation. This will generalize [17], where a
combination of horizontal and purely vertical currents was studied. 3)
A new practical technique for application of the generalized CIM will
be introduced.

2. EQUIVALENT SURFACE REPRESENTATION OF
VOLUME CURRENTS

In this section, results that enable the mapping of three-dimensional
volume source currents into equivalent two-dimensional surface sources
are presented. First, fundamentals of the mapping by means of
Huygens’ principle are reviewed. Then the formulation is applied
to the fields associated with planar surfaces, and the derivation of
the equivalent sources for a vertical line current element is revisited.
Also, the source equivalence with respect to incident versus total
electromagnetic field is discussed.

2.1. Source Equivalence Based on Huygens’ Principle

[23] (see also [24, Chapter 6]) carried out an elegant derivation of
the surface equivalent electromagnetic sources by means of Huygens’
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principle. In short, [23] defined a step function as

P (r) = 1 r ∈ V, P (r) = 0 r /∈ V (1)

and multiplied Maxwell’s equations by P (r) to obtain truncated
Maxwell’s equations

∇×EV + ∂tBV = ∇P ×E (2)
∇×HV − ∂tDV = JV +∇P ×H (3)

∇ ·BV = ∇P ·B (4)
∇ ·DV = ρV +∇P ·D (5)

where a notation
FV = PF (6)

is used. In Eqs. (2)–(5) E and H denote the electric and magnetic
fields, D and B the electric and magnetic flux densities and J and
ρ the electric currents and charges, respectively. Following Huygens’
principle, Eqs. (2)–(5) describe the fields in V generated by sources
on the right-hand side of the equations. The truncation of the sources
outside V is seen to give rise to additional sources

JmH = −∇P ×E (7)
JH = ∇P ×H (8)

ρmH = ∇P ·B (9)
ρH = ∇P ·D (10)

where subscript m denotes magnetic currents and charges. Since

∇P = δ(s)n (11)

where δ is the Dirac delta function; s ∈ S and n is the normal unit
vector of the surface; the sources in Eqs. (7)–(10) are confined to the
surface S of volume V (see Fig. 1). These new sources are called
Huygens’ equivalent sources, and they facilitate the mapping of the
volume currents outside V to equivalent sources on the surface S.
It is noted that Fukushima’s equivalence theorem [19] well-known to
geophysicists considered only the source (8).

By taking the divergence of the equivalent currents the above
equations can be augmented by the continuity equations

∇ · JH = −∂tρH −∇P · J ∇ · JmH = −∂tρmH (12)

It is also important to note that sources JmH and JH are not
independent. This can be seen, by adopting the approach used by [25],
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Figure 1. Volume V and its surface S having normal unit vector n.
Fields EV , DV , HV and BV are zero outside V .

as follows. It is assumed that the linear medium is isotropic with
constitutive relations

D = εE (13)
B = µH (14)

where ε and µ are the (scalar) electrical permittivity and the magnetic
permeability, respectively, and that all sources are outside V , i.e.,
JV , ρV = 0. Note that in geophysical situations considered in this
paper volume V represents the region between the ionosphere and the
ground, which is to a good approximation source-free. By using the
simplifying assumptions, Eqs. (2) and (3) can be written for sources
having temporal dependence of the form eiωt with angular frequency
ω as

∇×EV + iωµHV = −JmH (15)
∇×HV − iωεEV = JH (16)

Then by substituting Eq. (15) into the curl of Eq. (16) separately for
equivalent magnetic and electric sources, one obtains

∇× (∇×He
V )− ω2µεHe

V = ∇× JH (17)
∇× (∇×Hm

V )− ω2µεHm
V = −iωεJmH (18)

where superscripts e and m denote the fields generated by the electric
and magnetic sources, respectively. By subtracting Eq. (18) from
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Eq. (17) one then obtains

∇× (∇× (He
V −Hm

V ))− ω2µε(He
V −Hm

V ) = ∇× JH + iωεJmH (19)

The equivalent form of the sources is then found by requiring that the
field (He

V −Hm
V ) vanishes, i.e., He

V = Hm
V , which occurs for a given

source when the source on the right-hand side of Eq. (19) is zero, i.e.,

JmH = −∇× JH

iωε
(20)

Further, by using the equivalence (20), one can write Eqs. (15) and (16)
as

∇×EV + iωµHV =
∇× JH

iωε
(21)

∇×HV − iωεEV = JH (22)

which can be written by making a substitution E′V = EV − JH/iωε as

∇×E′V + iωµHV = 0 (23)
∇×HV − iωεE′V = 2JH (24)

By comparing Eqs. (15) and (16) to Eqs. (23) and (24) it is seen
that when fields in V and not on S are of interest, the equivalent
magnetic source current can be replaced by doubling the equivalent
electric current. Identical treatment, not repeated here, can be given to
obtain a rule for replacing the equivalent electric source by a magnetic
source.

Finally, by writing the rule for replacing the equivalent magnetic
current by doubling the equivalent electric current as

(JH ,JmH) → (2JH , 0) (25)

it can be seen from the continuity Eq. (12) that the replacement
generates corresponding changes also for the equivalent charges.
Namely

(ρH , ρmH) → (2ρH , 0) (26)

Thus, also the equivalent magnetic charge is replaced by doubling the
electric charge.

2.2. Planar Equivalent Sources for a Vertical Line Current
Element

Due to its common use in space weather applications (e.g., [14, 15, 17]),
it is of interest to revisit the derivation of the equivalent sources for
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Figure 2. Vertical current element of length z0 as a part of
a divergence-free current system Jtot (dashed line). Transparent
elements show the equivalent representation of the vertical current
element J in terms of an equivalent electric current (JH) and a charge
(ρH) on the surface S. Note that the charge ρH is a distribution
rather than a point source. The sources −J, JH and ρH together are
nonradiating below the surface S.

a vertical line current element. The source equivalence is considered
both in terms of the incident and the total (incident and reflected)
fields.

First, the source equivalence in terms of only the incident field is
considered. The source J is written in Cartesian coordinate system
r = xex + yey + zez with the choice n = ez (see Fig. 2) as

J = δ(x)δ(y) (Θ(z − z0)−Θ(z)) Ieiωtez (27)

where Θ is the Heaviside step function, I the amplitude of the current,
|z0| the length of the current element and a harmonic temporal
dependence is assumed. It is important to note that the current
element is understood as a part of a continuous current loop so
that in quasi-static situations considered below there is no charge
accumulation, i.e., ∇ · Jtot = 0.

By using Eqs. (8) and (10) and by applying the replacement rule of
doubling of the electric sources discussed in Section 2.1, the equivalent
sources associated with the current in Eq. (27) can be obtained by
computing

JH(s) =
2
µ

δ(s)n×B(s) (28)

ρH(s) = 2εδ(s)n ·E(s) (29)

where the argument s is shown to emphasize that the fields are
evaluated at the surface S. The magnetic flux density and the electric
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field in Eqs. (28)–(29) are obtained from the vector potential A by
operations

E = −iω

(
1 +

1
k2
∇∇·

)
A (30)

B = ∇×A (31)

Note that due to the condition ∇·Jtot = 0, the divergence of the vector
potential in Eq. (30) vanishes if the retardation of the field is neglected.
The vector potential is obtained from the expression

A =
µ

4π

∫

V

[J(r′)]
|s− r′|dV ′ (32)

In Eq. (32) square brackets indicate that the time is understood as
retarded, and the distance function |s − r′| is understood, also with
complex arguments, as

√
(s− r′) · (s− r′). For complex arguments

the branch of the distance function is chosen so that the integral in
Eq. (32) converges.

Inserting the source in Eq. (27) into Eq. (32) results in the integral

A =
µ

4π

∫

V

[
J(r′)

]

|s− r′|dV ′ =
µ

4π
ezIeiωt

∫ 0

z0

e−
iω
c

√
r2+z′2

√
r2 + z′2

dz′ (33)

where c is the speed of light and r2 = x2+y2. Geophysical applications
in mind, the exponential term in the right-hand side of Eq. (33) can
be expanded as

e−
iω
c

√
r2+z′2 =

∞∑

n=0

1
n!

(
− iω

c

√
r2 + z′2

)n

(34)

The term
√

r2 + z′2 in Eqs. (33)–(34) is maximized at z′ = z0. Thus
by assuming a condition

∣∣∣ω
c

√
r2 + z2

0

∣∣∣ ¿ 1, to be discussed more in
depth below, it is reasonable to truncate the series in Eq. (34) to the
first few terms. By including only the first term from the expansion,
i.e., by neglecting the field retardation, Eq. (33) can be solved to give

µ

4π

∫

V

[J(r′)]
|s− r′|dV ′ ≈ − µ

4π
Ieiωt log

(√
r2 + z2

0 + z0

r

)
ez (35)

Finally, by using the expression (35) in Eqs. (28)–(31) and by moving
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into circular cylindrical coordinates one obtains

JH(s) ≈ Ieiωt

2π

z0

r
√

r2 + z2
0

δ(z)er (36)

ρH(s) ≈ Ieiωt iωµε

2π
log

(√
r2 + z2

0 + z0

r

)
δ(z) (37)

where er is the radial unit vector.
In a typical geophysical setting of interest the highest frequencies

are of the order of 1Hz. On the other hand, the length of the field-
aligned currents carrying the current between the ionosphere and the
magnetosphere is of the order of 1Re ≈ 6400 km. Also, one is interested
in the fields near the line current element and thus r is at maximum
of the order of 1000 km. Using these upper estimates, one obtains∣∣∣ω

c

√
r2 + z2

0

∣∣∣ of the order of 0.1. It follows that the truncation of
the expansion in Eq. (34) to the first term is reasonable, i.e., typical
geophysical situations of our interest are quasi-static. Furthermore, it
should be noted that taking the limit z0 → −∞ for Eqs. (36)–(37)
is not strictly valid if ω 6= 0. By taking first the limit ω → 0, the
charge in Eq. (37) vanishes, and then by taking the limit z0 → −∞
the equivalent source current for the vertical line current element can
be reduced to

JH(r) = − I

2πr
er (38)

The electric current distribution in Eq. (38) was used by [17] as
an equivalent source for a half-infinite vertical line current element.
However, as shown above, the distribution in Eq. (38) is the sole
equivalent source for a vertical line current element only in static
situations; if ω 6= 0 the equivalent charge also needs to be considered.
Interestingly, the apparent difference between the equivalent sources
derived above and the single source used by [17] disappears when the
source equivalence is considered in terms of the total (incident and the
reflected) instead of only the incident field. This will be shown next.

The usage of only the first term of the expansion (34) is
equivalent to neglecting the displacement current term in Maxwell’s
equations, and without the displacement current, the current included
in Maxwell’s equations is divergence-free. It follows that the current
across the boundaries is continuous, and thus at the air-ground
boundary one can write by using Ohm’s law

E1σ1 · n = E2σ2 · n (39)
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where subscripts 1 and 2 refer to the electric fields and the
conductivities of the air and ground, respectively. Since the ratio
between the conductivity of the air (σ1 ∼ 10−14 S/m) and the
conductivity of the ground (σ2 ∼ 0.1 − 10−3 S/m) is always of the
order of 10−10 or less, it follows from Eq. (39) that the vertical electric
field in the ground at the air-surface boundary is always to a good
approximation zero, i.e., E2 · n = 0. For ε 6= 0 this naturally implies
D2 · n = 0.

The condition D2 · n = 0 is met if there exists a surface charge
ρs generating a vertical electric flux that annihilates the incident flux.
Then, in the air, the vertical component of the incident flux is doubled
by the field due to the surface charge, which can be solved by using
the continuity condition of the normal component of the electric flux
density across the surface, i.e.,

ρs = (0− 2D) · n = −2D · n = −2εE · n (40)

It is seen from the charge densities included in Eqs. (29) and (40) that
if the ground is located immediately below the surface S at which the
equivalent sources are located, the horizontal component of the electric
field associated with the two charge distributions vanishes. It follows
that from the viewpoint of the magnetic field and the total horizontal
electric field on the ground, only the equivalent current needs to be
considered. Accordingly, the usage of the current distribution in
Eq. (38) as a sole equivalent source for a half-infinite vertical line
current element, as was done by [17], is justified.

3. THEORY AND GEOPHYSICAL APPLICATIONS OF
THE COMPLEX IMAGE METHOD

In this section, CIM is derived from EIT for a simplified treatment
of the electromagnetic induction in the ground. In contrast to the
treatment by [20] who derived CIM from EIT for a homogeneous
ground, both the classical and extended CIM approximations of EIT
are presented for layered ground structures. Also a linear element-
based approach to the application of CIM is introduced.

3.1. Derivation of the Complex Image Method for Layered
Ground Structures from the Exact Image Theory

Following the classical CIM derivation for layered ground structures
given by [16], it is assumed that the surface impedance Zs giving the
ratio of the horizontal electric and magnetic fields on the ground does
not depend on the spatial wavenumbers of the fields. This is a valid
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assumption if the second (and higher) order gradients of the fields
vanish [26]. Generally, the comparisons between the exact and CIM-
based results have shown that the fields are smooth enough for the
approximation to hold to a good degree for various source current
distributions (e.g., [16, 17, 22]).

For planar impedance surfaces described in terms of Zs the image
functions of the EIT take the form [24, p. 225]‡ (for EIT treatment of
a dipole source over impedance surface, see [27])

fTE(ζ) = δ(ζ)− 2
p
e
− ζ

p Θ(ζ) (41)

fTM (ζ) = −δ(ζ)− 2pk2epk2ζΘ(ζ) (42)

f0(ζ) = −2
p

Z2
s

Z2
s − η2

(
epk2ζ − e

− ζ
p

)
Θ(ζ) (43)

where k = ω
√

µε, η =
√

µ/ε and

p =
Zs

iωµ0
(44)

p as defined in Eq. (44) is identifiable as a complex skin depth. The
image currents JI are obtained from the source current J by using the
image functions in operations [24, p. 213]

JI =
(

fTE ¯̄1 + f0ezez ·
(

¯̄1 +
1
k2
∇∇

))
· Jc (45)

where

¯̄1⊥ = ¯̄1− ezez (46)

Jc = ¯̄C · J( ¯̄C · r) (47)
¯̄C = ¯̄1− 2ezez (48)

and where operator ezez is a dyad carrying out the projection to ez

and ¯̄1 is a unit dyadic. Note that in the selected form of the image
current in Eq. (45), the image function fTM is not used at all.

The vector potential associated with the reflected electromagnetic
field at z ≤ 0 can be obtained from

Ar =
µ

4π

∫ ∞

0

∫

V

[JI(r′, ζ)]
|r− r′ − ζez|dV ′dζ (49)

‡ Note that the sign for the image function f0 in Eq. (7.164) of [24] is incorrect and needs
to be changed.
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The electric and magnetic fields are obtained from Eq. (49) by the
operations (30) and (31). Note that here the surface of the Earth is
located at z = 0 and ez points towards the ground, which is opposite
to the direction chosen, for example, in [20, 24]. It follows that the
sign of ζez in the distance term of Eq. (49) is opposite to the one seen
typically in the EIT literature.

As discussed by [24, p. 225–226], situations may occur where the
integral in Eq. (49) associated with some of the image functions in
Eqs. (41)–(43) does not converge. However, since the integration over
z′ in Eq. (49) can be carried out in the complex plane, the branch
of the integrand in Eq. (49) can be chosen so that the potential Ar

remains finite.
As is seen from Eqs. (41)–(43), the exact image of the original

source is distributed along the ζ-axis. To simplify the situation, it is
assumed that in the geophysical setting of interest the fields are quasi-
static, i.e., only the first term of the expansion (34) is used. The fTE

image (function) part of Eq. (49) can then be expressed as

ATE
r =

µ

4π

∫ ∞

0

∫

V

Jc(r′)fTE

|r− r′ − ζez|dV ′dζ (50)

which can be expanded by using the Taylor series of the distance term
as

ATE
r =

µ

4π

∫

V
Jc(r′)

∞∑

n=0

1
n!

∂n

∂ζn

1
|r−r′−ζez|

∫ ∞

0
(ζ−ζ0)nfTEdζdV ′ (51)

where the derivative operates only on the distance term and the
derivatives are evaluated at ζ = ζ0. The “trick” is then to find
an optimal value for ζ0 in Eq. (51). The optimal ζ0 is looked for
here by setting the first moment and thus the first order term of the
expansion (51) to zero, i.e.,

∫ ∞

0
(ζ − ζ0)fTEdζ = 0 (52)

Provided that Re(p) > 0, the condition (52) yields for fTE in Eq. (41)
ζ0 = 2p. The expansion (51) can then be written as

ATE
r = − µ

4π

∫

V

Jc(r′)
|r− r′ − 2pez|dV ′ + Rn (53)

where Rn indicates the second and higher order terms of Eq. (51). The
first term on the right-hand side of Eq. (53) can be obtained also by
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setting fTE = −δ(ζ − 2p), which is the image corresponding to the
classical CIM derived by [16]. Here the image is seen to result from
a planar impedance surface and truncation of the series expansion of
the field expressions given by EIT to the first order term.

By using ζ0 = 2p and fTE in Eq. (41), Rn in Eq. (53) can be
solved for a point source of amplitude I located at x′ = y′ = 0 and
z′ = −h to give at x = y = z = 0

Rn =
µ

4π
I
∞∑

n=2

(−1)n 1
|2p+h|

(
p

2p+h

)n(
(−2)n−2e−2Γ(n+1,−2)

)
ev (54)

where ev is unit vector giving the orientation of the point source, Γ is
an incomplete gamma function and it is required that Re(p) > 0 and
Im(p) 6= 0. From Eq. (54) it is clear that for Rn to be negligible, and
for the CIM approximation to be valid for the specified source, it is
required that |p| ¿ h. Repetition of the above treatment for the image
function f0 in Eq. (43), provided that Re(p) > 0 and Re(pk2) < 0,
results in ζ0 = p − 1

pk2 . Accordingly, the corresponding requirement

for Rn to be negligible for the point source is
∣∣∣p− 1

pk2

∣∣∣ ¿ h.
In a typical geophysical setting the source is located in the

ionosphere at the height of about 110 km and one is interested in
periods of about 1–1000 seconds. Then by using the plane wave surface
impedance derived for southern Finland by [21], one can estimate
the magnitudes of

∣∣∣p− 1
pk2

∣∣∣ and |p| and compare them to the height
h of the source. For the relatively long periods associated with
geophysical signals

∣∣∣p− 1
pk2

∣∣∣ is several orders of magnitude larger than
110 km. It thus follows, that the f0 image cannot be approximated by
means of the classical CIM. Furthermore, for the specified geophysical
situation throughout the range of periods 1–1000 seconds the condition
Re(pk2) < 0 is not fulfilled. Consequently, the integral in Eq. (52) does
not converge for the f0 image and the optimal ζ0 cannot, in fact, be
determined. However, with the settings above, |p| varies from about 4
to 60 km from the shortest to the longest period. It follows that the
classical CIM approximation for the fTE image is, and crucially from
the viewpoint of actual applications of the method, valid. Anyhow, it
is quite clear that the approximation becomes poor also for the fTE

image at periods much longer than about 100 s. This was demonstrated
for approximate EIT images derived by [20] by [28].
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3.2. Derivation of an Extended Complex Image Method

It was seen above that the reflected electromagnetic field associated
with the quasi-static volume current J can be expressed by means of
vector potential

Ar =
µ

4π

∫ ∞

0

∫

V

(
fTE ¯̄1 + f0ezez ·

(
¯̄1 + 1

k2∇∇
))

· Jc(r′)

|r− r′ − ζez| dV ′dζ (55)

It was also seen that the fTE part of the expression (55) can be
approximated as

ATE
r = − µ

4π

∫

V

Jc(r′)
|r− r′ − 2pez|dV ′ (56)

However, the fields associated with the f0 image cannot be
approximated by means of classical CIM. For a divergence-free current
J, also the reflected current Jc = ¯̄C · J( ¯̄C · r′) is divergence-free and
the field associated with the f0 image in Eq. (55) simplifies to

A0
r =

µ

4π

∫ ∞

0

∫

V

(f0ezez) · Jc(r′)
|r− r′ − ζez| dV ′dζ (57)

If the divergence-free current J is perpendicular to ez, the term (57)
vanishes and the reflected electromagnetic field is expressed solely
by Eq. (56) and we obtain the classical CIM. However, if J is not
perpendicular to ez everywhere, the term (57) needs to be considered
as well.

In principle, the non-CIM feature of the f0 image can be avoided
by mapping J into equivalent sources on plane S and thus by converting
source currents to be perpendicular to ez. As was seen in Section 2.2,
the equivalent mapping may also generate a charge distribution
on S. However, it was shown that in geophysical situations the
horizontal electric field generated by the equivalent charge distribution
is annihilated by the surface charge required by the current continuity.
It follows that if the magnetic field and the horizontal components of
the electric field are of interest, one can neglect the equivalent charge
and the fields can be computed by applying the classical CIM to the
equivalent currents perpendicular to ez. This was the approach used
by [17] who took into account also the fields generated by the vertical
current elements. In more general situations, however, equivalent
mapping would constitute an extra step that is not in fact necessary
as will be shown below.

In typical geophysical situations such as the one considered in
Section 3.1, it holds η2 À |Z2

s | and |1/p| À |pk2|. It follows that the



72 Pulkkinen et al.

image function f0 in Eq. (43) can be written to a good approximation
as

f0(ζ) ≈ −2pk2
(
1− e

− ζ
p

)
Θ(ζ) (58)

Due to the condition |1/p| À |pk2| it is clear that the fields associated
with the f0 image are generally much weaker than those associated
with the fTE image. However, the factor 1/k2 in Eq. (30) cancels k2

in Eq. (58) and thus the electric field associated with the divergence
of the vector potential is not necessarily negligible. Also note that
although the source current J is divergence-free, the divergence of the
vector potential in Eq. (57) does not necessarily vanish as only the
component parallel to ez is considered.

By using Eqs. (30) and (57), the electric field associated with the
divergence of the vector potential can be written as

E0
r = − iωµ

4πk2
∇∂z

∫ ∞

0

∫

V

f0(ez · Jc(r′))
|r− r′ − ζez| dV ′dζ (59)

By using the identity

∂z
1

|r− r′ − ζez| = −∂ζ
1

|r− r′ − ζez| (60)

and partial integration over the coordinate ζ, one obtains

E0
r = − iωµ

4πk2
∇

∫ ∞

0

∫

V

f ′0(ez · Jc(r′))
|r− r′ − ζez| dV ′dζ (61)

By introducing the approximation (58) into Eq. (61) and by using the
complex image approximation by means of truncating the expansion of
the EIT expressions to the first order term and by using the condition
in Eq. (52) for the approximate image function f ′0 one obtains

E0
r =

iωµ

2π
p∇

∫

V

(ez · Jc(r′))
|r− r′ − pez|dV ′ (62)

Eq. (62) is of the form E0
r = −∇Φ where Φ is the quasi-electrostatic

potential depending on charge distributed as a function of (ez ·Jc(r′)).
It can thus be interpreted that in contrast to image currents associated
with the fTE image, the electric field E0

r is associated with (complex)
image charge. Note that in the case of an image charge, the source is
shifted by p instead of 2p in the direction of the z-axis.

It is of interest to see how Eq. (62) compares to the horizontal
electric field associated with half-infinite line current element derived
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by [17]. The fields are evaluated on the ground. For this, one inserts
the source in Eq. (27) into Eq. (62) and takes the limit z0 → −∞ to
obtain for z = −h following expression for the horizontal electric field

E0
r⊥=

iωµ

2π
Ieiωtp


 r

√
r2+(h + p)2

(
h + p +

√
r2+(h + p)2

)

er (63)

As the incident electric field and the field associated with the fTE

image do not have horizontal component for the studied setup, the
expression (63) is the total horizontal electric field associated with
a half-infinite vertical source current. The corresponding total field
derived by [17] is

E0
r⊥=

iωµ

4π
Ieiωt

(
r

h +
√

r2 + h2
− r

h + 2p +
√

r2+(h + 2p)2

)
er (64)

It is seen by comparing Eqs. (63) and (64) that the fields obtained by
the two approaches are not identical. However, in geophysical settings
of interest the difference is negligible as is seen from Fig. 3 where
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Figure 3. Top panel: the real part of the radial horizontal electric
field given by Eqs. (63) (circles) and (64). Bottom panel: the imaginary
part of the radial horizontal electric field given by Eqs. (63) (circles)
and (64). The fields were evaluated on the ground by using the period
of 100 s, I = 106 A, h = 110 km, the vacuum permeability and the
plane wave surface impedance derived for southern Finland by [21].
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the fields were evaluated by using the period of 100 s, I = 106 A,
h = 110 km, the vacuum permeability and the plane wave surface
impedance derived for southern Finland by [21].

Summarizing, it was shown that the electric field associated with
the f0 image, which cannot be approximated directly by means of
the classical CIM, can be expressed in a simplified form for a quasi-
static divergence-free source current J. The derived electric field
expression (62) associated with an image charge can be considered
as an extension to the classical CIM. Further, in the limiting case of a
vertical half-infinite source current the extension was seen to be (to a
good approximation) equivalent with the CIM extension by [17].

3.3. Generalized Application of the Extended CIM

The following approach will be used to generalize the CIM-based
computation of the electromagnetic fields generated by quasi-static
divergence-free volume currents. The source current J is expressed as
a linear superimposition of N linear elements (see Fig. 4). Formally,

J(r) =
N∑

i=1

Ji (65)

Due to the linearity of Maxwell’s equations, the total (incident and
reflected) electromagnetic field associated with the elements can be
expressed as

E(r) =
N∑

i=1

Ei B(r) =
N∑

i=1

Bi (66)

where Ei and Bi are the fields generated by an element Ji. The
fields associated with individual elements are obtained by the following
procedure. First, one computes the electromagnetic field generated by
an element J′el of length ∆l in the coordinates r′ (see Fig. 4)

J′el(r
′) = δ(x′)δ(z′)Θ(y′)Θ(∆l − y′)Ieiωtey′ (67)

It can be shown that the source (67) gives rise to an incident
electromagnetic field

E′el(r
′) =

iωµ

4π
Ieiωt log

(
−y′ +

√
r2
1 + z′2

−y′ + ∆l +
√

r2
2 + z′2

)
ey′ (68)
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Figure 4. Panel (a) quasi-static divergence-free source current system
J(r) presented as a superimposition of linear current elements. Panel
(b) a single element Ji of the current system and the electromagnetic
field associated with the element in the coordinates r′ = ¯̄Ri · (r−∆ri)
were operator ¯̄Ri carries out the rotation of the coordinate system and
∆ri the translation of the origin.

B′
el(r

′) =
µ

4π
Ieiωt

(
1√

r2
2 + z′2

(
−y′ + ∆l +

√
r2
2 + z′2

)

− 1√
r2
1 + z′2

(
−y′ +

√
r2
1 + z′2

)
)

(
x′ez′ − z′ex′

)
(69)

where r2
1 and r2

2 denote x′2 + y′2 and x′2 + (y′ − ∆l)2, respectively.
The electric field associated with the f0 image is in turn obtained
by substituting the source (67) into Eq. (62). In using Eq. (62), one
computes the field associated with the non-reflected and non-translated
source, i.e.,

E′0r,el =
iωµ

2π
p∇′

∫

V

(ez · J′el(r′′))
|r′ − r′′| dV ′′ (70)

which gives

E′0r,el =
iωµ

2π
pIeiωtsin(ϑ)

[(
1√

r2
1 + z′2

(
y′ +

√
r2
1 + z′2

)

− 1√
r2
2 + z′2

(
y′ −∆l +

√
r2
2 + z′2

)
)

(
x′ex′ + z′ez′

)

+

(
1√

r2
1 + z′2

− 1√
r2
2 + z′2

)
ey′

]
(71)



76 Pulkkinen et al.

where the angle ϑ is obtained from Eq. (75).
The total electromagnetic field generated by an element is

obtained by a superimposition of the incident field, the reflected field
associated with the approximate fTE image and the reflected electric
field associated with the approximate f0 image. Accordingly, the total
field associated with an element Ji is obtained in the coordinates r
from Eqs. (68), (69) and (71) by computing

Ei(r) = ¯̄R
−1

i ·E′el( ¯̄Ri · (r−∆ri))

− ¯̄R
−1

ci ·E′el( ¯̄Rci · (r− ¯̄C ·∆ri − 2pez))

+ ¯̄R
−1

ci ·E′0r,el( ¯̄Rci · (r− ¯̄C ·∆ri − pez)) (72)

Bi(r) = ¯̄R
−1

i ·B′
el(

¯̄Ri · (r−∆ri))

− ¯̄R
−1

ci ·B′
el(

¯̄Rci · (r− ¯̄C ·∆ri − 2pez)) (73)

where operators ¯̄Ri and ¯̄Rci carry out the rotation of the coordinates
needed to obtain different orientations of the source currents (and the
electromagnetic field), and ∆ri is the translation of the origin of the
coordinate system used to obtain different locations of the sources. The
derivation of the transformations used in the expressions (72) and (73)
is given in Appendix A.

For example, if the two end-points of the element are (x1, y1, z1)
and (x2, y2, z2), the angles ϕ and ϑ associated with ¯̄Ri (and ¯̄Rci) that
transforms the element to be aligned with the y′-axis, as was chosen
in Eq. (67), are obtained by computing

ϕ = tan−1

(
y0

x0

)
− π

2
(74)

ϑ = cos−1

(
z0√

x2
0 + y2

0 + z2
0

)
− π

2
(75)

where now x0 = x2 − x1, y0 = y2 − y1, z0 = z2 − z1. The translation
is ∆r = (x1, y1, z1). The total electromagnetic field generated by the
source J in Eq. (65) is obtained by superimposing the fields generated
by the individual elements as indicated by Eq. (66).

The generalized application of the extended CIM was verified by
means of the following example. The external current system of the
setup was composed of a horizontal current segment at height 110 km
and flowing from the origin of the (x, y)-plane to the distance of 200 km
along the positive y-axis. Both ends of the horizontal segment are
coupled to linear segments in (x, z)-plane having 45 degree angle with
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respect to the horizontal plane. The current loop having amplitude
of I = 106 A is closed in the infinity. Again, layered ground model
derived for southern Finland by [21] was used in the calculations. The
total electromagnetic field generated by the external current system
was computed on the ground at z = 0 for the period of 100 s using
both the extended CIM as described above and the exact formulation
by [18].

The results of the verification calculations are given in Figs. 5
and 6 where the imaginary and the real parts of the total electric and
magnetic field are shown, respectively. The results for the real and
imaginary parts of the electric and magnetic field, respectively, are
similar (not shown). It is seen that the fields computed by means
of extended CIM and the exact formulation by [18] are practically
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Figure 5. The imaginary parts of the total horizontal (top left) and
the vertical (bottom left) electric field computed by means of extended
CIM and the difference between the fields obtained by extended CIM
and the exact formulation by [18] (right column). See the text for
the setup of the computations. The scale for the top row is indicated
in the top right corner of the first panel, which shows vector length
corresponding to the electric field amplitude of 1000mV/km. The
unit in the bottom row is mV/km.
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Figure 6. The real parts of the total horizontal (top left) and the
vertical (bottom left) magnetic field computed by means of extended
CIM and the difference between the fields obtained by extended CIM
and the exact formulation by [18] (right column). See the text for
the setup of the computations. The scale for the top row is indicated
in the top right corner of the first panel, which shows vector length
corresponding to the magnetic field amplitude of 1000 nT. The unit in
the bottom row is nT.

identical. Consequently, it can be concluded that for the given setup
the extended CIM provides a very accurate approximation for the
electromagnetic fields.

4. SUMMARY

In this work, source equivalence and computation of the reflected
(induced) electromagnetic field in geophysical situations were studied.
It was shown that the application of Huygens’ principle [23] allows for
full generalization of Fukushima’s equivalence theorem [19] that applies
only to the magnetic field. The source equivalence was revisited for
a vertical line current element, and it was shown that the equivalent
charge required to replace the original source by a planar equivalent
source together with the surface charge associated with the reflected
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field generates a purely vertical total electric field on the ground. This
explains why the CIM application introduced by [17] works for both the
magnetic field and horizontal components of the electric field although
only equivalent currents are considered.

The classical CIM was derived from EIT for planar impedance
surfaces, condition which requires that the second (and higher) order
gradients of the fields on the ground vanish. The classical CIM was seen
to result from truncation of the series expansion of the EIT expressions
to the first order term. Then the classical CIM was extended by
considering a divergence-free source current that may have components
also perpendicular to the ground plane. The extension that was seen to
generate a complex image charge is not present in the classical CIM.
Importantly, the electric field associated with the image charge was
seen to merge in the limiting case of a vertical half-infinite source
current with the CIM extension by [17].

A generalized application of the extended CIM to geophysical sit-
uations having divergence-free volume source currents was introduced.
The application involves decomposition of the source into linear cur-
rent elements and rotations, translations and reflections of the electro-
magnetic field expressions associated with each element. Expressions
needed for rotations, translations and reflections that result from gen-
eral transformation rules for Maxwell’s equations were also provided.
The generalized element representation combined with the derived ex-
tended CIM expressions will allow a computationally efficient consider-
ation of the electromagnetic induction in a layered ground in situations
where the source currents have arbitrary orientations with respect to
the ground plane. The validity of the new approach was verified for an
example external current system and ground model setup by means of
comparisons to results obtained from exact formulation by [18].

In summary, this study provided the following new contributions.
1) It was rigorously proofed that CIM by [17] is valid although only
equivalent currents are considered. 2) CIM was extended to situations
where the source current can have any orientation. The method
in [17] is restricted to high geomagnetic latitudes, but the general
approach enables treatment of geomagnetic induction problems at all
latitudes. 3) A practical CIM application technique was derived based
on a current element representation and coordinate transformations
carried out in the complex space. The validity of the new results
was demonstrated by using an independent analytical model of three-
dimensional ionospheric currents.
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APPENDIX A. ROTATION, REFLECTION AND
TRANSLATION OF THE SOURCE CURRENT

To express the effect of rotations, reflections and translations of
the source current on the corresponding electromagnetic field, one
needs transformation rules for Maxwell’s equations. This in mind,
it can be shown that a transformation from a system of equations in
Cartesian coordinates r to another coordinate system carried out by
mapping r′ = g(r) results in another “Cartesian” form of the equations
(e.g., [25, 26, p. 144–159]) (see also [27, and references therein]). The
invariance requires that the fields, constitutive parameters and the
sources are transformed as

E′ =
(

¯̄J
T
)−1

·E (A1)

H′ =
(

¯̄J
T
)−1

·H (A2)

¯̄ε′ =
¯̄J · ¯̄ε · ¯̄J

T

det
(

¯̄J
) (A3)

¯̄µ′ =
¯̄J · ¯̄µ · ¯̄J

T

det
(

¯̄J
) (A4)

J′ =
¯̄J · J

det
(

¯̄J
) (A5)

ρ′ =
ρ

det
(

¯̄J
) (A6)

where ¯̄J is the Jacobian of the transformation r → r′ and ¯̄ε and ¯̄µ are
the permittivity and permeability tensors, respectively.

A combined rotation and translation of the coordinates can be
defined as a transformation

r′ = ¯̄R · (r−∆r) (A7)

where the operator ¯̄R is defined as
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¯̄R =

( cos(ϕ) sin(ϕ) 0
− cos(ϑ) sin(ϕ) cos(ϑ) cos(ϕ) − sin(ϑ)
− sin(ϑ) sin(ϕ) sin(ϑ) cos(ϕ) cos(ϑ)

)
(A8)

In Eq. (A8) the rotation ϕ is made counter-clockwise keeping the z-axis
constant and rotation ϑ is made clockwise keeping the rotated x-axis
constant. For the transformation (A7) it holds

¯̄J = ¯̄R det
(

¯̄R
)

= 1 ¯̄R
T

= ¯̄R
−1

(A9)

By writing the reflection operator ¯̄C as

¯̄C = ¯̄1− 2nn =

( 1 0 0
0 1 0
0 0 −1

)
(A10)

where the normal unit vector n is assigned to the third component
of a vector (i.e., n = ez), the combined reflection with respect to ez,
rotation and translation can be carried out by the transformation

r′ = ¯̄Rc · (r− ¯̄C ·∆r) (A11)

where the operator ¯̄Rc is obtained from Eq. (A8) by substitution
ϑ = −ϑ. The transformation (A11) fulfills identities identical to those
in Eq. (A9).

The effect of the rotation and translation of the source on the
electromagnetic field can be seen from Eqs. (A1), (A2), (A5). Namely,
if the source is translated and rotated as

J′(r′) = ¯̄R · J (A12)

where r′ is given by Eq. (A7), the fields in coordinate system r can be
obtained from

E(r) = ¯̄R
−1 ·E′ (A13)

H(r) = ¯̄R
−1 ·H′ (A14)

For a medium linear and isotropic in the coordinates r, by using
Eqs. (14) and (A4), Eq. (A14) can be written for the magnetic flux
density as

B(r) = ¯̄R
−1 ·B′ (A15)

Clearly, identical relations hold also for the fields associated with
a source that is translated, rotated and reflected by means of the
transformation (A11).
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