Vol. 15
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-04
Rigorous Expressions for the Equivalent Edge Currents
By
Progress In Electromagnetics Research B, Vol. 15, 77-94, 2009
Abstract
An exact form for the equivalent edge current is derived by using the axioms of the modified theory of physical optics and the canonical problem of half-plane. The edge current is expressed in terms of the parameters of incident and scattered rays. The analogy of the method with the boundary diffraction wave theory is put forward. The edge and corner diffracted waves are derived for the problem of a black half-strip.
Citation
Yusuf Ziya Umul, "Rigorous Expressions for the Equivalent Edge Currents," Progress In Electromagnetics Research B, Vol. 15, 77-94, 2009.
doi:10.2528/PIERB09040104
References

1. Born, M. and E. Wolf, The Principles of Optics, Cambridge, 2003.

2. Silver, S., Microwave Antenna Theory and Design, McGraw-Hill, 1949.

3. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116

4. Ahluwalia, D. S., R. M. Lewis, and J. Boersma, "Uniform asymptotic theory of diffraction by a plane screen," SIAM J. Appl. Math., Vol. 16, No. 4, 783-807, 1968.
doi:10.1137/0116065

5. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting half plane," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

6. Umul, Y. Z., "Uniform theory for the diffraction of evanescent plane waves," J. Opt. Soc. Am. A, Vol. 24, No. 8, 2426-2430, 2007.
doi:10.1364/JOSAA.24.002426

7. Ryan, Jr., C. E. and L. Peters Jr., "Evaluation of edge-diffracted fields including equivalent currents for the caustic regions," IEEE Trans. Antennas Propagat., Vol. 17, No. 3, 292-299, 1969.
doi:10.1109/TAP.1969.1139445

8. Knott, E. F. and T. B. A. Senior, "Equivalent currents for a ring discontinuity," IEEE Trans. Antennas Propagat., Vol. 21, No. 9, 693-695, 1973.
doi:10.1109/TAP.1973.1140559

9. Knott, E. F. and T. B. A. Senior, "Comparison of three high-frequency diffraction techniques," Proc. IEEE, Vol. 62, No. 11, 1468-1474, 1974.
doi:10.1109/PROC.1974.9653

10. James, G. L. and V. Kerdemelidis, "Reflector antenna radiation pattern analysis by equivalent edge currents," IEEE Trans. Antennas Propagat., Vol. 21, No. 1, 19-24, 1973.
doi:10.1109/TAP.1973.1140409

11. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, 1990.

12. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

13. Michaeli, A., "Correction to `Equivalent edge currents for arbitrary aspects of observation'," IEEE Trans. Antennas Propagat., Vol. 33, No. 2, 227, 1985.
doi:10.1109/TAP.1985.1143558

14. Knott, E. F., "A progression of high-frequency RCS prediction techniques," Proc. IEEE, Vol. 73, No. 2, 252-264, 1985.
doi:10.1109/PROC.1985.13137

15. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Scitech, 2004.

16. Zhang, M. and Z. Wu, "The application of MOM and EECs on EM scattering from slot antennas," Progress In Electromagnetics Research, Vol. 21, 307-318, 1999.
doi:10.2528/PIER98093001

17. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

18. Umul, Y. Z., "Modified theory of physical optics," Opt. Express, Vol. 12, No. 10, 4959-4972, 2004.
doi:10.1364/OPEX.12.004959

19. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part I," J. Opt. Soc. Am., Vol. 52, No. 6, 615-625, 1962.
doi:10.1364/JOSA.52.000615

20. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part II," J. Opt. Soc. Am., Vol. 52, No. 6, 626-637, 1962.
doi:10.1364/JOSA.52.000626

21. Rubinowicz, A., "Die beugungswelle in der kirchhoffschen theorie der beugungserscheinungen," Ann. Phys. (Leipzig), Vol. 53, No. 12, 257-278, 1917.

22. Rubinowicz, A., "Thomas Young and the theory of diffraction," Nature, Vol. 180, No. 7, 160-162, 1957.
doi:10.1038/180160a0

23. Ganci, S., "A general scalar solution for the half-plane problem," J. Mod. Opt., Vol. 42, No. 8, 1707-1711, 1995.
doi:10.1080/09500349514551491

24. Ganci, S., "Half-plane diffraction in a case of oblique incidence," J. Mod. Opt., Vol. 43, No. 12, 2543-2551, 1996.

25. Umul, Y. Z., "MTPO based potential function of the boundary diffraction wave theory," Opt. Laser Tech., Vol. 40, No. 6, 769-774, 2008.
doi:10.1016/j.optlastec.2008.01.011

26. Umul, Y. Z., "Uniform line integral representation of edge diffracted fields," J. Opt. Soc. Am. A, Vol. 25, No. 1, 133-137, 2008.
doi:10.1364/JOSAA.25.000133

27. Sommerfeld, A., "Matematische theorie der diffraction," Math. Ann., Vol. 47, No. 2--3, 317-374, 1896.
doi:10.1007/BF01447273

28. Rubinowicz, A., "Zur kirchhoffschen beugungstheorie," Ann. Phys. (Leipzig), Vol. 73, No. 5--6, 339-364, 1924.

29. Ufimtsev, P. Y., "Rubinowicz and the modern theory of diffracted rays," Electromagn., Vol. 15, No. 5, 547-565, 1995.
doi:10.1080/02726349508908441

30. Umul, Y. Z., "Diffraction of evanescent plane waves by a resistive half-plane," J. Opt. Soc. Am. A, Vol. 24, No. 10, 3226-3232, 2007.
doi:10.1364/JOSAA.24.003226

31. Umul, Y. Z., "Modified theory of physical optics solution of impedance half plane problem," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2048-2053, 2006.
doi:10.1109/TAP.2006.877176