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Abstract—An exact form for the equivalent edge current is derived
by using the axioms of the modified theory of physical optics and the
canonical problem of half-plane. The edge current is expressed in terms
of the parameters of incident and scattered rays. The analogy of the
method with the boundary diffraction wave theory is put forward. The
edge and corner diffracted waves are derived for the problem of a black
half-strip.

1. INTRODUCTION

The high frequency diffraction techniques of electromagnetic theory are
namely based on two methods which can be introduced as geometrical
optics (GO) and physical optics (PO) [1, 2]. GO is a ray based method
that defines the ray paths and amplitudes of electromagnetic waves
according to the solution of two equations that are the high frequency
approximations of the Helmholtz equation. These are the eikonal
and transport equations. GO was correctly defining the transmitted
and reflected rays in the context of the scatterer’s geometry but was
predicting zero field at the shadow regions. This defect of the theory
was eliminated by Keller, who introduced his geometrical theory of
diffraction (GTD) in the middle of the twentieth centaury [3]. He
extended GO by defining the edge and surface diffracted rays which
are the fields that are observed at the shadow boundaries. Since he
used the high frequency asymptotic solutions of the canonical problems
in order to define the diffraction coefficients, the diffracted fields were
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approaching to infinity at the transition boundaries where the GO
fields have discontinuities. Keller’s theory had also problems for the
geometries that were including caustics. The infinities at the transition
regions were removed by the uniform versions of GTD [4, 5]. Recently
a uniform theory was also put forward for the diffraction of evanescent
plane waves [6]. The method of equivalent currents was developed by
the efforts of Ryan et al. [7], Knott et al. [8, 9] and James et al. [10]
in order to obtain a valid field expression for the caustic regions. In
the method of equivalent currents, an infinitesimal current element,
which is related with the incident field, is defined that flows along the
diffracting edge of the scatterer. The integration of the element along
the edge gives the edge diffracted rays. The edge currents are obtained
by using the diffracted fields that are found from the rigorous solutions
of canonical problems [11]. The method was further developed by
Michaeli who obtained a line integral expression which was also valid
for the regions that are out of the Keller’s cone [12, 13]. He derived
the line integral by using the method of asymptotic reduction in order
to directly find the edge diffracted waves. The detailed history of the
progress of the equivalent currents method can be found in[14, 15].
The method of equivalent edge currents has important application in
the electromagnetic theory of scattering. Zhang and Wu studied the
hybridization of this method with the method of moment [16]. An
equivalent source version was investigated by Hongo and Naqvi for a
conducting disk and a hole in a conducting plane [17].

It is the aim of this paper to derive rigorous expressions for the
equivalent edge currents by using the axioms of the modified theory
of physical optics (MTPO) [18] and the high-frequency asymptotic
solution of the half-plane problem. MTPO is a method that gives the
exact diffracted waves for scattering problems by conducting bodies.
The defect of PO is the incorrect edge contributions of the scattering
integral. MTPO fixes this defect directly in the structure of PO by
redefining the surface current according to three axioms. We will
express the configuration of the equivalent current in a different way
from the commonly used representations in the literature. It will be
shown that the scattering angle is not directly equal to the observation
angle and the integration of the current along the edge contour gives
the edge diffracted waves. It will also be noted that this method is
strongly analogous to the boundary diffraction wave (BDW) theory of
optical diffraction [19, 20]. The diffraction of plane waves by a black
half-strip will be investigated by using the method as an application.

A time factor of exp(jwt) will be considered and suppressed
throughout the paper.
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2. THEORY

The canonical problem of a conducting half plane which is illuminated
by a plane wave is taken into account. The geometry of the problem
is given in Fig. 1.
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Figure 1. Geometry of the half-plane.

The incident wave has the scalar expression of

ui = u0 exp[jk(x cosφ0 + y sinφ0)] (1)

for k is the wave-number. u represents one of the scalar components
of the electrical or magnetic fields. The incident diffracted field can be
given by the equation of

udi = u0
e−j π

4

2
√

2π

1

cos φ−φ0

2

e−jkρ

√
kρ

. (2)

We will suppose a line integral of

ud(P ) =
1
4π

∫

C

f(l)ui(Qe)
e−jkRe

Re
dl (3)

where C is the edge contour. Qe is the diffraction point on the edge.
Re is the distance between the diffraction and observation points. We
will only consider the incident diffracted field to outline the philosophy
of the theory. The method will be generalized for the soft and hard
surfaces in the following sections. Eq. (3) can be rewritten as

ud(P ) =
u0

4π

∞∫

−∞
f(z′)

e−jkRe

Re
dz′ (4)

for the geometry in Fig. 1. Re is equal to

Re =
√

ρ2 + (z − z′)2 (5)



80 Umul

where ρ is
√

x2 + y2. The integral in Eq. (4) can be evaluated by
using the method of stationary phase. The first derivative of the phase
function can be obtained as

∂Re

∂z′
= −z − z′

Re
(6)

which gives the stationary phase point as zs = z when equated to zero.
The stationary phase value evaluation of the integral yields

ud ≈ u0
e−j π

4

2
√

2π
f(z)

e−jkρ

√
kρ

. (7)

In fact, there are two edge diffracted waves in a diffraction problem
by a conducting surface. The first one is the incident diffracted
wave, which compensates the discontinuity of the incident wave at the
shadow boundary. The second one is the reflected diffracted wave that
overcomes the reflected wave’s discontinuity at the reflection boundary.
In the present analysis, we consent that the half-plane is black which
reflects or transmits the incident wave that hits on it. As mentioned
before, the generalization of the theory will be performed in the next
sections.

In Fig. 2, a general geometry is given for the incident and
edge diffracted rays. β and η are arbitrary angles that combines
the diffraction point with the observation point. Their values can
be determined in the asymptotic evaluation of the edge diffraction
integral.
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Figure 2. General geometry for the edge diffraction.

As a second step, we will equate Eq. (7) to Eq. (2). f(z) is found
to be

f(z) =
1

cos φ−φ0

2

. (8)
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It is important to note that f(z) is the stationary phase value of f(z′)
and we are interested in the structure of f(l). Fig. 2 offers a general
geometry for edge diffraction and we will benefit from this figure in
order to determine f(l). Eq. (8) can be rewritten as

f(z) =

√
2

1 + cos(φ− φ0)
(9)

which leads to the equation of

f(z) =

√
2

1− cos[π − (φ− φ0)]
. (10)

Equation (10) can be written as

f(z) =
√

2
1− ~si · ~sd

(11)

from which we can obtain the general expression for the function of
f(l). f(l) can be given by

f(l) =
√

2
1− ~si · ~sd

(12)

which yields the equation of

f(l) =

√
2

1− cos(β + φ0)
. (13)

As a result the line integral of edge diffraction can be obtained as

ud(P ) =
1

2
√

2π

∫

C

ui(Qe)√
1− ~si · ~sd

e−jkRe

Re
dl. (14)
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Figure 3. Edge diffraction geometry.
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The diffraction integral for the reflected diffracted waves can be
constructed in a similar way.
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Figure 4. Diffraction geometry for the reflected diffracted waves.

When Fig. 4 is considered, f(z) can be written as

f(z) =

√
2

1− cos[π − (φ + φ0)]
(15)

since ~sr ·~sd = cos[π − (φ− φ0)]. The line integral of diffraction satisfies

ud(P ) =
1

2
√

2π

∫

C

ui(Qe)√
1− ~sr · ~sd

e−jkRe

Re
dl (16)

for the reflected diffracted fields. It is important to note that Eqs. (14)
and (16) are in the same form. This is an expected result since the
reflected ray can be thought as the transmitted field which hits the half
plane in the image direction of the incident wave [18]. The equivalent
current can be defined as

Ieq(Qe) =
√

2
ui(Qe)√
1− ~sr · ~sd

(17)

according to the line integrals that are derived in this section. The line
integral of edge diffraction can be written as

ud(P ) =
1
4π

∫

C

Ieq(Qe)
e−jkRe

Re
dl (18)

when Eqs. (16) and (17) are taken into account. It is apparent that a
line integral along the contour of the edge can be constructed for every
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GO ray field in a problem of diffraction according to Eq. (18). The
equivalent current is a function of the angle of incidence and scattering.
The angle of scattering is not determined by the rigorous observation
angles of the exact solution but shows an arbitrary direction as in
Fig. 2. The exact value of the scattering angle is designated in the
evaluation process of the line integral.

3. LINE INTEGRALS FOR SOFT AND HARD
SURFACES

Generally one of the two boundary conditions is satisfied by the fields
on a conducting object’s surface. These are the Dirichlet (soft surface)
and Neumann (hard surface) conditions. The Dirichlet condition can
be defined as

u|S = 0 (19)

whereas the Neumann condition has the expression of

∂u

∂n

∣∣∣∣
S

= 0 (20)

for u represents the total field. n is the normal of the surface. The line
integrals of edge diffraction can be written as

uds(P ) = − 1
4π

∫

C

[
Ii
eq(Qe)− Ir

eq(Qe)
] e−jkRe

Re
dl (21)

and

udh(P ) = − 1
4π

∫

C

[
Ii
eq(Qe) + Ir

eq(Qe)
] e−jkRe

Re
dl (22)

for soft and hard surfaces when the exact solution of the diffraction
problem by a half-plane is considered [11]. Ii

eq(Qe) and Ir
eq(Qe) can be

defined as
Ii
eq(Qe) =

√
2

ui(Qe)√
1− ~si · ~sd

(23)

and
Ir
eq(Qe) =

√
2

ui(Qe)√
1− ~sr · ~sd

(24)

respectively.
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4. THEORY OF THE BOUNDARY DIFFRACTION
WAVE

The theory of BDW was first invented by the studies of Rubinowicz [21]
and Miyamoto et al. [19, 20] in order to introduce a quantitative basis
for ideas of Young who mentioned that the scattered field by an
edge discontinuity consists of two sub-fields [22]; a field that passes
through the aperture unaffected by the discontinuity and a wave which
originates from the edge contour. Rubinowicz reduced the diffraction
integral of Kirchhoff into a line integral for a spherical wave that passes
through an aperture. He showed that the integration of the line integral
gives the edge diffracted waves. Miyamoto et al. generalized the theory
for arbitrary wave incidence. According to the theory of BDW the
diffracted waves can be expressed in terms of a line integral of

ud(P ) =
1
4π

∫

C

ui(Qe)
(~si × ~sd) · ~t
1− ~si · ~sd

e−jkRe

Re
dl (25)

for ~t is the unit tangential vector of the edge contour. This theory was
applied to the problem of diffraction by a half-plane and it was seen
that the theory of BDW gives the same result with PO [23, 24]. In fact
an equivalent current can be defined as

Ieq = ui(Qe)
(~si × ~sd) · ~t
1− ~si · ~sd

(26)

when compared with Eq. (16). Exact line integrals for the theory of
BDW were introduced by Umul, recently [25, 26].

Another important point of the theory is the poles of the
integrand. The current component, in Eq. (26), approaches to infinity
at ~si · ~sd = 1. This expression can be rewritten as

cos(β + φ0) = 1 (27)

according to Fig. 2. Eq. (27) leads to the critical point of β = −φ0,
which represents the transition region of the incident ray. In fact this
singularity is not a problem according to the BDW theory [19] since
it guarantees the existence of the GO field with respect to the Stokes
theorem. According to the point of view of the electromagnetic theory,
the singularity occurs because the diffraction coefficient of Keller is
a high frequency asymptotic expansion of the exact diffracted wave
and is not valid at the transition region, where the detour parameter
approaches to zero. This parameter is the argument of the Fresnel
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function that is the exact solution of the diffraction problem by a half-
plane [27] and can be approximated to the diffracted field of GTD only
for the detour parameter is large enough [28, 29]. The uniform versions
of GTD are invented in order to eliminate the related singularity of
the diffracted wave at the transition region. In fact the rigorous field
expression is uniform and the GO wave can be obtained by a second
line integration as shown in [26].

5. APPLICATION: DIFFRACTION BY A FINITE EDGE

A finite edge, the geometry of which is given in Fig. 5, is taken into
account. The strip is placed at S = {(x, y, z) : x = 0, y = 0, z ∈
(0, a)}. The originality of this problem are the corner diffracted rays,
which occur at z = 0 and z = a. The physical interpretation of these
rays is analogous to that of the edge diffracted waves. The corner
diffracted rays compensate the discontinuity of the edge diffracted field.

The surface is illuminated by a plane wave which has the
expression of u0 exp [jk(x sin θ0 + z cos θ0)]. We will use the alternative
form of the equivalent currents, derived in the Appendix. For the sake
of simplicity, only the incident diffracted fields will be evaluated. The
line integral expression of the diffracted can be written as

ud(P ) =
1

2
√

2π

∫

C

ui(Qe)
√

1− ~sr · ~sd

~ne · (~sd − ~si)
e−jkRe

Re
dl (28)

according to Eq. (14). Eq. (28) can be arranged as

ud(P ) =
u0

2
√

2π

a∫

z′=0

ejkz′ cos θ0

√
1− ~sr · ~sd

~ne · (~sd − ~si)
e−jkRe

Re
dz′ (29)

for Re is equal to
Re =

√
ρ2 + (z − z′)2 (30)

for C · ρ is equal to
√

x2 + y2 · ~si and ~sd can be defined by

~si = − sin θ0~ex − cos θ0~ez (31)

and
~sd = sin β sin η~ex − sinβ cos η~ey − cosβ~ez (32)

according to the geometry in Fig. 5. ~sr is equal to sin θ0~ex − cos θ0~ez.
The scalar product of ~sr · ~sd can be determined as

~sr · ~sd = sin β sin θ0 sin η + cosβ cos θ0. (33)
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~ne is −~ey. The integral, in Eq. (29), can be evaluated
asymptotically [30]. The integral reads

ud(P ) =
u0

2
√

2π

a∫

z′=0

ejkz′ cos θ0

√
1− sin β sin θ0 sin η − cos β cos θ0

sin β cos η

e−jkRe

Re
dz′. (34)

The phase function of the integral, in Eq. (36), can be given by

g(z′) = z′ cos θ0 −Re. (35)

The first derivative of the phase function gives

g′(z′) = cos θ0 +
z − z′

Re
. (36)

The value of β at the stationary point is equal to θ0 according to
Eq. (36). Eq. (34) can be written as

ud(P ) =
u0

2
√

2π

ejk(z cos θ0−ρ sin θ0)

Res
√

1 + sin η

∞∫

z′=−∞
e−jk

sin2 θ0
2Res

(z′−zs)2dz′ (37)

at the stationary phase point [18]. Res and zs are the stationary phase
values of Re and z, respectively. As a result the diffracted field by the
edge contour of C is found to be

ud(P ) ≈ u0e
−j π

4

2
√

2π

e−jkρ sin θ0

√
kρ sin θ0

1
cos(σ/2)

ejkz cos θ0 (38)

for σ is equal to (π/2) − η. ρ is Res sin θ0 at the stationary point.
The field approaches to infinity at η = −π/2. This coordinate is the
place of the shadow boundary where the incident field discontinuously
goes to zero. The diffracted field has a cylindrical wave nature. It
is important to note that η is equal to φ − (3π/2). The place of the
transition region is at φ = π in the cylindrical coordinates.

The detour parameter of the field can be given by

ξ =
√

2kρ sin θ0 cos
φ

2
. (39)

The trigonometric relation of

−kρ sin θ0 = kρ sin θ0 cosφ− ξ2 (40)

is valid. Eq. (40) will be used in the phase of Eq. (38) instead of
−kρ sin θ0. The term of kρ sin θ0 cosφ is equal to kx sin θ0 according to
Fig. 5. As a result, the uniform version of Eq. (38) can be written as
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ud(P ) ≈ u0e
jk(x sin θ0+z cos θ0)sign(ξ)F [|ξ|] (41)

when Refs. [6, 31] are taken into account. sign(x) is the signum
function, which is equal to 1 for x > 0 and zero, otherwise. F [x]
represents the Fresnel integral, which is equal to

F [x] =
ej π

4√
π

∞∫

x

e−jt2dt. (42)

The transition region of the incident diffracted field occurs at φ = π,
which is the coordinate of the discontinuity of the incident wave.

The corner diffracted waves are evaluated from the edge points of
the integral, given in Eq. (34). First of all the edge point at z′ = 0 will
be taken into account. β is equal to π − θ at this point. Re is r. The
corner diffracted wave can be found as

uc1 = − u0

jk2
√

2π

√
1− sin θ sin θ0 cosφ + cos θ cos θ0

sin θ sinφ(cos θ + cos θ0)
e−jkr

r
(43)

according to [16]. The second corner diffracted field reads

uc2 =
u0

jk2
√

2π

√
1− sinβc sin θ0 cosφ− cosβc cos θ0

sinβc sinφ(cos θ0 − cosβc)
e−jkRec

Rec
(44)

where Rec is equal to
√

ρ2 + (z − a)2 ·βc is sin−1(ρ/Rec). It is apparent
that the diffracted fields, in Eqs. (43) and (44), are not uniform,
because they are evaluated directly by using the edge point technique,
which gives the GTD fields. There are two detour parameters in
question. The first one is the detour parameter of the edge diffracted
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Figure 5. Geometry of the finite edge.
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wave, which is given in Eq. (39). The second one is related with the
corner diffracted wave that can be defined as

ξc = −
√

2kr cos
θ + θ0

2
(45)

since θ ∈ [0, π] in the spherical coordinates. The uniform corner
diffracted field can be obtained as

uc1 =
u0√

2

f(θ, φ)
√

sin θ0√
sin θ sin(φ/2)cos θ−θ0

2

sign(ξc)F [|ξc|]sign(ξ)F [|ξ|]ejk(x sin θ0+z cos θ0) (46)

where f(θ, φ) is equal to

f(θ, φ) =
√

1− sin θ sin θ0 cosφ + cos θ cos θ0. (47)

uc2 can be made uniform in a similar way. In this study we will only
deal with the edge diffracted wave and uc1.

6. NUMERICAL RESULTS

In this section, the edge and corner diffracted fields will be plotted
numerically. The edge diffracted wave compensates the GO field at the
transition region since the GO wave is discontinuous at this region. The
diffracted field’s amplitude is the half of the Go wave at the transition
zone. A similar compensation occurs for the edge diffracted wave since
it has a discontinuity at the corner of the scatterer. For this reason the
function of the corner diffracted field is analogous to the edge diffracted
wave with a dimension difference. Edge diffracted field exists for the
line discontinuities. The corner diffracted field is taken into account for
a point discontinuity. For this reason it is a spherical wave in nature
as can be seen in Eqs. (43) and (44). The discontinuity of the edge
diffracted wave is shown in Fig. 6.
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Figure 6. Discontinuity of the edge diffracted wave.
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In Fig. 6, it is shown that the edge diffracted waves form a cone
which is named as Keller’s cone. This cone will be continuous along
the edge contour since the same diffraction will occur on the points
of the edge that follow each other. But after the corner point of the
edge, there is no point that will cause an edge diffracted wave. For
this reason there will be discontinuity at the edge diffracted wave for
θ > π − θ0, which determines a transition region for the process of
corner diffraction at θ = π − θ0. The edge diffracted wave exists in
the space for θ < π − θ0. This phenomenon is similar to that of the
discontinuity of the GO field. We expect that the amplitude of the
corner diffracted wave is half of the amplitude of the edge diffracted
wave at θ = π − θ0 which is the transition region.

Figure 7 shows the variation of the edge diffracted wave with
respect to the angle of φ, which changes in the plane of (x, y). The field,
given in Eq. (41), is plotted. ρ is equal to 6λ. The angle of incidence
(θ0) is 60◦. The amplitude of the incident wave is one. According to
Fig. 7, the shadow boundary occurs at φ = 180◦, which is a harmonious
value with the geometry, given in Fig. 5. There is no incident wave
for φ > 180◦ since the plane of the edge contour cloaks the incident
field. It is important to note that the amplitude of the diffracted wave
is equal to 0.5 at the shadow boundary. This value is the half of the
incident wave’s amplitude.

Figure 8 depicts the variation of the total, edge and corner
diffracted waves versus θ. The corner diffracted field is plotted, using

Figure 7. Edge diffracted wave.
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Eq. (46). Total field is the sum of Eqs. (41) and (46). ρ has the same
value with Fig. 7. φ is taken as 90◦. (θ0) is equal to 60◦. It can be
observed from Fig. 8 that the edge diffracted wave goes discontinuously
to zero at 120◦ which is π − θ0 in Fig. 6. Its value is equal to 0.5 at
the transition region. The amplitude of the corner diffracted wave
is 2.5 at this zone. The graphics are harmonious with the physical
considerations.

7. CONCLUSION

In this paper, new expressions are derived for the theory of equivalent
edge currents by using the method of MTPO and the diffraction
coefficients of the half plane problem. The line integrals for hard
and soft surfaces are expressed and the relation of the equivalent edge
currents and the theory of BDW is stressed. The new expressions are
applied to the problem of diffraction of plane waves by a finite edge
and the diffracted waves are plotted numerically. It is shown that
the results are in harmony with the physical expectations which are
considered according to the theory of edge diffraction. It is observed
that the corner diffracted waves compensate the discontinuity of the
edge diffracted field in the transition region, which occurs at the corner
of the geometry.

Figure 8. Compensation of the edge diffracted wave.
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APPENDIX A.

In this section, we will derive an alternative expression for the
equivalent current representation, given in Eq. (23). With this aim,
we will take into account the diffraction geometry of Fig. A1.

i
s

rs

ds

en eQ − Half

plane

αβ

α

Figure A1. Geometry of edge diffraction.

The equivalent can be written as

Ieq =
√

2
ui(Qe)√

1− cos(β + α)
(A1)

in terms of the angles of diffraction. Eq. (A1) can be rearranged as

Ieq =
ui(Qe)

sin β+α
2

(A2)

which also yields the equation of

Ieq = ui(Qe)
sin β−α

2

sin β+α
2 sin β−α

2

. (A3)

Eq. (A3) can be rewritten as

Ieq = 2ui(Qe)
sin β−α

2

cosβ − cosα
(A4)

which gives

Ieq =
√

2ui(Qe)

√
1− cos(β − α)
cosβ − cosα

. (A5)
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Eq. (A5) can be written as

Ieq =
√

2ui(Qe)
√

1− ~sr · ~sd

~ne · (~sd − ~si)
(A6)

in terms of the unit vectors, defined in Fig. A1.
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