Vol. 90
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-02-18
Application of Quasi Monte Carlo Integration Technique in Efficient Capacitance Computation
By
Progress In Electromagnetics Research, Vol. 90, 309-322, 2009
Abstract
A new integration technique based on use of Quasi Monte Carlo Integration (QMCI) technique is proposed for Method of Moments (MoM) solution of Integral equation for capacitance computation. The integral equation for unknown charge distribution over the capacitors is formulated. The solutions are obtained by MoM using the QMCI technique. It is observed that the proposed method is not only capable of dealing with the problem of singularity encountered in the Integral Equation efficiently but also provides accurate computation of the capacitances of parallel plate, cylindrical and spherical capacitors.
Citation
Mrinal Mishra, Nisha Gupta, Ankhuri Dubey, and Shradha Shekhar, "Application of Quasi Monte Carlo Integration Technique in Efficient Capacitance Computation," Progress In Electromagnetics Research, Vol. 90, 309-322, 2009.
doi:10.2528/PIER09011310
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Su, D., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

3. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

4. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the method of moments," Progress In Electromagnetics Research, PIER 74, 57-67, 2007.

5. Tong, M. S., "A stable integral equation solver for electromagnetic scattering by large scatterers with concave surface ," Progress In Electromagnetics Research, 113-130, 2007.
doi:10.2528/PIER07041506

6. Geyi, W., "New magnetic field integral equation for antenna system," Progress In Electromagnetics Research, PIER 63, 153-170, 2006.

7. HÄanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions," Progress In Electromagnetics Research, 243-278, 2006.
doi:10.2528/PIER06051901

8. Nesterenko, M. V. and V. A. Katrich, "The asymptotic solution of an integral equation for magnetic current in a problem of waveguides coupling through narrow slots," Progress In Electromagnetics Research, PIER 57, 101-129, 2006.

9. Li, M. K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, PIER 57, 311-333, 2006.

10. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

11. Mishra, M. and N. Gupta, "Singularity treatment for integral equations in electromagnetic scattering using Monte Carlo integration technique," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1619-1623, June 2008.
doi:10.1002/mop.23457

12. Mishra, M. and N. Gupta, "Monte carlo integration technique for the analysis of electromagnetic scattering from conducting surfaces," Progress In Electromagnetics Research, PIER 79, 91-106, 2008.

13. Becker, A. A., The Boundary Element Method in Engineering, McGraw-Hill, London, 1992.

14. Niederreiter, H., Random Number Generation and Quasi-monte Carlo Methods, SIAM, Pennsylvania, 1992.

15. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd Ed., Cambridge University Press, 1992.

16. Halton, J. H., "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals," Numer. Math., Vol. 2, 84-196, 1996.

17. Rosca, V. and V Leitao, "Quasi Monte Carlo mesh-free integration for meshless weak formulations," Engineering Analysis with Boundary Elements, Vol. 32, 471-479, 2008.
doi:10.1016/j.enganabound.2007.10.015

18. Chew, W. C. and L. Jiang, "A complete variational method for capacitance extractions," Progress In Electromagnetics Research , PIER 56, 19-32, 2006.

19. Liang, C. H., "Method of largest extended circle for the capacitance of arbitrarily shaped conducting plates," Progress In Electromagnetics Research Letters, Vol. 1, 51-60, 2008.
doi:10.2528/PIERL07112101

20. Legrand, X., A. Xemard, G. Fleury, P. Auriol, and C. A. Nucci, "A Quasi-Monte Carlo integration method applied to the computation of the Pollaczek integral," IEEE Transactions on Power Delivery, Vol. 23, 1527-1534, 2008.
doi:10.1109/TPWRD.2007.909050

21. Zhao, J., "Singularity-treated quadrature-evaluated method of moments solver for 3-D capacitance extraction," Annual ACM IEEE Design Automation Conference Proceedings of the 37th Conference on Design Automation, 536-539, Los Angeles, California, United States, 2000.