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Abstract—A new integration technique based on use of Quasi
Monte Carlo Integration (QMCI) technique is proposed for Method
of Moments (MoM) solution of Integral equation for capacitance
computation. The integral equation for unknown charge distribution
over the capacitors is formulated. The solutions are obtained by
MoM using the QMCI technique. It is observed that the proposed
method is not only capable of dealing with the problem of singularity
encountered in the Integral Equation efficiently but also provides
accurate computation of the capacitances of parallel plate, cylindrical
and spherical capacitors.

1. INTRODUCTION

The Method of Moments (MoM) [1–4] is one of the widely used
numerical techniques employed for the solution of variety of problems
formulated in the form of integral equations [5–10]. The MoM is
based upon the transformation of an integral equation, into a matrix
equation by employing expansion of the unknown in terms of known
basis functions with unknown coefficients to be determined.

One of the aspects of the MoM formulation is to deal with the
problem of the singularity of the function that has to be integrated
to obtain the matrix elements. It is in fact well known that MoM
integrals posses a singular behavior inherent in their kernels and the
point matching technique commonly employed in MoM solution usually
makes the diagonal terms singular. The inclusion of singular Green’s
function as the kernel of the integral equation introduce singularities of
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order 1/R and 1/R2 as R → 0, where R = |r− r′| denotes the distance
between the source and observation points. As such, traditional
integration schemes based on Gaussian quadrature are ineffective
and lead to inaccurate results. Various analytical and numerical
techniques have been adopted to deal with such integrals. The
Monte Carlo Integration (MCI) technique was suggested in [11, 12] for
electromagnetic scattering problems which takes care of the problem
of singularity by avoiding a small region around the location of
singularity. A similar approach is used in Boundary Element Method
(BEM) [13] where the singular point is surrounded by a small circle
of radius ε and then the solution is examined as ε → 0 However, the
present paper proposes the Quasi Monte Carlo Integration (QMCI)
technique [14–17] which takes care of the singularity problem inherently
by judiciously choosing such methods for generation of quasi Monte
Carlo points over the domain of integration, that the need for function
evaluation at the singular point does not arise, thus proving to
be a better option than MCI. Various methods have been used
for extraction of capacitances of several capacitors [18, 19]. In this
paper, the QMCI technique in MoM solution of integral equation for
determining the unknown charge distribution and then the evaluation
of capacitances of parallel plate, cylindrical and spherical capacitors
has been implemented.

2. QUASI MONTE CARLO INTEGRATION TECHNIQUE

The Monte Carlo Integration (MCI) technique provides approximate
solutions to a variety of mathematical problems by performing
statistical sampling simulations on a computer. General idea of
MCI technique is to change an integration problem into an average
calculation. It makes use of random numbers to perform the
calculation. This method is easy to implement. There are only
minimal requirements that make the method applicable to very difficult
integration problems. The evaluation requires only the ability to
sample random points x and evaluate f(x) for these points. Because
of its intuitive sense and simplicity of implementation Monte Carlo
methods are used in a wide range of applications. Their efficiencies
relative to other numerical methods increase when the dimension of
the problem increases e.g., Quadrature formula becomes very complex
while MCI technique remains almost unchanged in more than one
dimension. In addition to this, the convergence of the MCI is
independent of dimensonality regardless of the smoothness of the
integrand. However, the MCI technique suffers from the problem of
generation of independent uniform random variables and the problem
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of obtaining an absolute upper bound for the error due to probabilistic
nature of the error which is overcome in QMCI technique. In numerical
analysis, a Quasi Monte Carlo Integration (QMCI) method is a method
for the computation of an integral that is based on low-discrepancy
sequences. This is in contrast to a regular Monte Carlo method, which
is based on sequences of pseudorandom numbers. The QMCI methods
use points that are evenly distributed; the points are spread over the
domain in such a way that there are no clusters. The classical QMCI
method replaces the independent random points used in MCI by a
deterministic set of distinct points that cover the region of integration
more uniformly. The use of quasi random sequences in place of the
usual pseudorandom numbers often improves the convergence of the
numerical integration and it is also possible to compute an absolute
bound for the error [20].

There are several well-known constructions for Quasi Random
Number (QRN) sequences. In the one dimensional case, it is achieved,
for example, by the Van der Corput sequence using a given prime
base [14]. obtained by reversing the digits in the representation of
some sequence of integers in a given base. To obtain a QRN sequence in
several dimensions, we use a different sequence in each dimension. The
classic example of this construction is the Halton sequence [15]. The
first dimension of the Halton sequence is the van der Corput sequence
base 2 and the second dimension is the van der Corput sequence using
base 3 as shown in Table 1. Dimension s of the Halton sequence is
the van der Corput sequence using the s-th prime number as the base.
In one dimension for a prime base p, the nth number in the sequence
{Hn} is obtained by the following steps.

For each n:
1. Write n as a number in base p. For example, suppose p = 3 and

n = 22, then we can write 22 in base 3 as 22 = 2∗32+1∗31+1∗30 =
211.

2. Reverse the digits and put a radix point (i.e., a decimal point base
p) in front of the sequence (in the example, we get 0.112 base 3).

3. The result is the Hn.
In s-dimension problem, each component a Halton sequence are

made with a different prime base p. First n primes can be used such as
Base 2, Base 3 and Base 5 for first three dimensions. Every time the
number of digits in n increases by one place, n’s digit-reserved fraction
becomes a factor of p finer-meshed. So, at each step as n increases
points of Halton sequence are better and better filling Cartesian grids.
In addition to this, the terms Hn of the Halton sequence can be
computed only once, because they do not depend on the geometry
of the problem.
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Table 1. Halton sequences for first 3 dimensions.

Dim
Dim = 1

(Base 2)

Dim = 2

(Base 3)

Dim = 3

(Base 5)

n = 1 1/2 1/3 1/5
n = 2 1/4 2/3 2/5
n = 3 3/4 1/9 3/5
n = 4 1/8 4/9 4/5
n = 5 5/8 7/9 1/25
n = 6 3/8 2/9 6/25
n = 7 7/8 5/9 11/25
n = 8 1/16 8/9 16/25

3. FORMULATION OF THE PROBLEM AND MOM
SOLUTION

The problem under investigation is that of finding the unknown charge
density over a metallic plate maintained at constant potential. We
know that the potential V (r) due to a charge distribution characterized
by density ρ(r′) over a region R is given by:

V (r) =
1

4πε0

∫

R

ρ(r′)
|r− r′|dr

′ (1)

Where r′ and r are the source and observation points respectively. If
this equation is applied to the metal surface where the potential V (r) is
known, then this becomes an integral equation for the unknown charge
density ρ(r′).

For MoM solution of the integral equation, taking some known
basis function fn(r′), the unknown charge on the conducting surface

is expanded as ρ(r′) =
M∑

n=1
anfn(r′) with unknown coefficient an to be

determined. Then on the surface we have

4πε0V (r) = a1

∫

R

f1

|r− r′|dr
′ + . . . + aM

∫

R

fM

|r− r′|dr
′ (2)

Applying the above equation on M observation points
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r1, r2, . . . , rM , on the surface, we get a matrix equation



4πε0V (r1)
...

4πε0V (rM )


 = [Amn]




a1
...

aM


 (3)

where
Amn =

∫

R

fn

|rm − r′|dr
′ (4)

The unknown vector an can be obtained by matrix inversion and
an approximate solution can be obtained for the entire surface.

4. QUASI MONTE CARLO INTEGRATION IN MOM

It is evident from (4) that a typical element of the moment matrix
is singular at r′ = rm. The integration of singular function cannot
be evaluated exactly or by ordinary numerical quadrature methods.
However, the specialized Gauss Quadrature rules are developed for
integrating singular functions. One specific rule is the Lin-Log rule
for integrating singular functions with known Log type singularity.
However, it requires the calculation of appropriate weights for each
type singularity problem such as point or line singularity separately.
Thus it is necessary to adopt means that is universal for any type of
singularity inside the integral and provides a good approximation of
the actual result. The technique adopted here is the QMCI technique
that gets rid of the singularity, making integration much simpler and
justified specially, in case of two dimensional and three dimensional
problems. As a matter of fact the technique does not even require
any prior knowledge of the occurrence and location of the singularity
in the integrand. It can be seen from Table 1 that the Halton points
generated for Dim = 2 with the prime base 3 or Dim = 3 with prime
base 5 are such that the point 0.5 is never generated. This means
that for the regions which are being sampled by the Halton sequences
with any prime base except 2 for integration of some function in that
region, the midpoints are never sampled. This property can be used for
the Monte Carlo integration of such functions which are singular only
at the midpoints. Indeed in case of point matching technique of the
MoM solution with pulse basis functions where the structure is divided
into segments, the self term observation points rm as given by (4) are
the midpoints of the segments over which the integration is performed.
Thus the proposed QMCI technique takes care of this point singularity
by sampling the segments with Halton points. It is also seen that the
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kernel of the integral equation has been retained in its exact form and
no approximation has been made in order to deal with the singularity.
Thus the QMCI technique does not require any analytical reduction of
the kernel before going for the numerical integration.

5. NUMERICAL RESULTS

In this section, the results from computational evaluation of the
capacitances are presented to demonstrate the efficiency and accuracy
of the method described above. As the first example, a square metallic
plate of dimension 1 m× 1m is considered which is placed over the xy
plane. It is maintained at a constant potential 1 V. The geometry is
shown in Figure 1.

0.5

-0.5

-0.5

0.5 x

1Vy

Figure 1. Square metallic plate at constant potential.

The problem is to find the unknown induced charged density
distribution over the plate by method of moments. The basis function
employed is the sub domain pulse i.e., piecewise (unit) constant over
the segments, basis function after dividing the source region R, i.e., the
plate, into M square segments of equal area. The observation points
(x1, y1), (x2, y2), . . . , (xM , yM ) are the mid points of the 1st, 2nd, . . .,
Mth segments respectively. Then (3) takes the form




4πε0
...

4πε0


 = [Amn]




a1
...

aM


 (5)

with
Amn =

∫∫

Sn

1√
(xm − x′)2 + (ym − y′)2

dx′dy′ (6)

The subscript of Sn denotes that the integration is done over the nth
segment.
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In evaluating the self term matrix element Ann using point
matching moment method [1], Sn is sampled with Halton points x′
derived with base 3 in the x-direction, and the points y′ with base 5 in
the y-direction to deal with the singularity at the mid point (xn, yn).
The result obtained for the charge distribution on the metallic plate
obtained for M = 100 sub domains is presented in Figure 2, where the
charge density is obtained at discrete points and the graph presents a
linear interpolation between each computed point.

Next, a parallel plate capacitor with square plates of dimension
1 m × 1m is maintained at a potential difference V0 = 2V is taken.
Thus one of the plates is maintained at +1V while the other at −1V
and are separated by a distance 1 m. Once the surface charge density
ρ(x, y) is determined by MoM on the plates, the total charge on each
plate is found as:

Q =
∫∫

Plate

ρ(x, y)dxdy (7)

and then the capacitance is C = Q/V0.
In this work, the magnitude of the charge Q over either of

the plates, and the capacitance C of the parallel plate capacitor is
computed as a function of number of segments M employed in method
of moments for a fixed number of Halton points N = 100. The results
are tabulated in Table 2. As expected, the increase in number of
segments facilitates the convergence of the capacitance.

Figure 2. Charge density distribution over the plate with 100 sub
domain pulse basis functions.
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Finally, the capacitance values are computed as a function of
variable number N of Halton points, for a fixed number of segments
M = 100 as shown in Table 3.

Table 2.

Number of
segments

M

Magnitude of charge
on either plates
Q (coulomb)

Capacitance of the
parallel plates

C (farad)
100
225
400
625

5.6327e-011
5.7215e-011
5.7676e-011
5.7960e-011

2.8163e-011
2.8607e-011
2.8838e-011
2.8980e-011

Table 3.

Number of
Halton points

N

Magnitude of
charge on either plates

Q (coulomb)

Capacitance of
parallel plates

C (farad)
20
50
75
100

5.8844e-011
5.6888e-011
5.7190e-011
5.6327e-011

2.9422e-011
2.8444e-011
2.8595e-011
2.8163e-011

Next to examine the accuracy of the proposed technique; the result
is validated for the problem of capacitance calculation of the unit cube.
This problem has no analytic solution, and has long been regarded as a
benchmark in the electrostatic theory. The result is obtained with total
96 segments (16 segments/face) i.e., 20 halton points only. The result is
compared with the result obtained by the quadrature evaluated MoM
solution for unit cube [21]. As evident from Table 4, the result is within
5% of error. The interesting part of the solution is that it does not
require any analytical treatment for singularity removal or extraction.

As the third example, a cylindrical capacitor is considered as
shown in Figure 3 with inner cylinder radius a = 1 m, outer radius
b = 2 m and length L = 2π m. The self term matrix element as given
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Table 4.

Capacitance of the
Unit Cube [21]

No. of Points 24

Capacitance of the
Unit Cube

Proposed Method

Relative Error
(%)

0.6482958 0.6765784 4.36

by (4) for this problem in cylindrical (ρ, φ, z) coordinates is

Ann =

∫∫

Sn

1√
(ρn cos φn−ρn cos φ′)2+(ρn sin φn−ρn sin φ′)2+(zn−z′)2

ρn
2dφ′dz′

(8)
with ρn taking constant values a or b depending on the value of n. The
segment Sn has the midpoints (ρn, φn, zn) and is sampled by Halton
points φ′ and z′ along the φ and z directions respectively with base
3. The capacitance values are computed for several cases such as with
respect to variation in number of segments and variation in spacing
between the cylindrical plates. The results are tabulated in Tables 5
and 6 respectively. The capacitance value is also compared with the
value obtained from analytical formula for variation in number of
segments and variation in spacing between the plates for fixed segment
number of 100. As evident with the increase in number of segments, the
results tend to converge and the deviation in analytical and numerical
results reduces.

As the last example, a spherical capacitor is considered as shown in
Figure 4 with radii of inner and outer spheres a = 1 m and b = 2m. The
self term matrix element as given by (4) for this problem in spherical

+Q
a

b -Q

Figure 3. Cylindrical capacitor. Figure 4. Spherical capacitor.
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Table 5.

Number of

segments

M

Capacitance of

the Cylindrical

Capacitor C (farad)

(Numerical

Computation)

Capacitance of the

Cylindrical

Capacitor C (farad)

(Analytical Formula)

C = 4πεL/ ln(b/a)

Relative

Error

(%)

64 5.2289e-010 5.037e-010 4.66

100 5.2828e-010 3.45

225 5.3599e-010 2.13

324 5.3710e-010 1.77

400 5.4010e-010 1.60

441 5.4070e-010 1.54

Table 6.

Spacing between

the Plates

(m)

Capacitance of the

Cylindrical

Capacitor C (farad)

(Numerical Computation)

Capacitance of the

Cylindrical

Capacitor C (farad)

(Analytical Formula)

1

2

4

5

10

20

5.2828e-010

3.4312e-010

2.4436e-010

2.2334e-010

1.7840e-010

1.5267e-010

5.0354e-010

3.1770e-010

2.1686e-010

1.9480e-010

1.4556e-010

1.1464e-010

polar (ρ, θ, φ) coordinates is

Ann =

∫∫

Sn

1√
(xn − x′)2 + (yn − y′)2 + (zn − z′)2

ρn
2 sin θ′dθ′dφ′ (9)

where xn = ρn sin θn cosφn, x′n = ρn sin θ′ cosφ′, yn = ρn sin θn sinφn,
y′ = ρn sin θ′ sinφ′, zn = ρn cosφn and z′ = ρn cosφ′ with ρn taking
constant values a or b depending on the value of n. The segment Sn

has the singular midpoint (ρn, θn, φn) and is sampled by Halton points
θ′ and ϕ′ along the θ and φ directions respectively with base 3. Again,
the capacitance values are computed for several cases such as with
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Table 7.

Number

of segments

M

Capacitance of

the Spherical

Capacitor C (farad)

(Numerical

Computation)

Capacitance of

the Spherical

Capacitor C (farad)

(Analytical Formula)

C = 4πε/(1/b− 1/a)

Relative

Error

(%)

15 2.2585e-010 2.2231e-010 1.59

25 2.4140e-010 8.59

36 2.2331e-010 0.45

64 2.2259e-010 0.13

100 2.2233e-010 0.008

121 2.2236e-010 0.008

Table 8.

Spacing between

the Spheres

(m)

Capacitance of

the Spherical

Capacitor C (farad)

(Numerical Computation)

Capacitance of

the Spherical

Capacitor C (farad)

(Analytical Formula)

1

2

5

10

20

100

2.2233e-010

1.6696e-010

1.3367e-010

1.2256e-010

1.1701e-010

1.1256e-010

2.2231e-010

1.6673e-010

1.3338e-010

1.2227e-010

1.1671e-010

1.1227e-010

respect to variation in number of segments and variation in spacing
between the spherical shells. The results are tabulated in Tables 7 and
8 respectively. The capacitance value is also compared with the value
obtained from analytical formula for variation in number of segments
and variation in spacing between the spheres for fixed segment number
of 100. As seen the increase in number of segments converges the
results. A very good agreement between the numerical and analytical
results is evident.

It should be noted that with the sub domain pulse basis
function, the matrix elements have been obtained in this work by
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actual integration of the functions without using any closed form or
approximation for them.

6. CONCLUSION

The QMCI technique using Halton sequence is proposed in the MoM
solution of the EFIE. This technique has been applied on problem
for unknown charge distribution on surfaces of metallic structures
and the capacitance computation of the parallel plate, cylindrical and
spherical capacitors. The results demonstrate that the proposed QMCI
technique produce results that are accurate. The higher accuracy is
evident especially at the edges where charge concentration is very high.
In addition to this, the QMCI is very effective in overcoming the
problem of singularity arising in the MoM formulation without any
need for analytical preprocessing and prior knowledge of occurrence
and location of singularity. This characteristic of QMCI makes it more
suitable for the problems in two and higher dimensions.
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