Vol. 89
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-01-16
Weak Form Nonuniform Fast Fourier Transform Method for Solving Volume Integral Equations
By
Progress In Electromagnetics Research, Vol. 89, 275-289, 2009
Abstract
Electromagnetic scattering problems involving inhomogeneous objects can be numerically solved by applying a method of moment's discretization to the hypersingular volume integral equation in which a grad-div operator acts on a vector potential. The vector potential is a spatial convolution of the free space Green's function and the contrast source over the domain of interest. For electrically large problems, the direct solution of the resulting linear system is expensive, both computationally and in memory use. Conventionally, the fast Fourier transform method (FFT) combined Krylov subspace iterative approaches are adopted. However, the uniform discretization required by FFT is not ideal for those problems involving inhomogeneous scatterers and sharp discontinuities. In this paper, a nonuniform FFT method combined weak form integral equation technique is presented. The method performs better in terms of speed and memory use than FFT on the configuration involving both the electrically large and fine structures. This is illustrated by a representative numerical test case.
Citation
Zhenhong Fan, Ru-Shan Chen, Hua Chen, and Da-Zhi Ding, "Weak Form Nonuniform Fast Fourier Transform Method for Solving Volume Integral Equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.
doi:10.2528/PIER08121308
References

1. Livesay, D. E. and K. M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. on MTT , Vol. 22, 1273-1280, 1974.
doi:10.1109/TMTT.1974.1128475

2. Schaubert, D., D. Wilton, and A. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation , Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

3. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, Apr. 2005.

4. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

5. Li, L.-W., Y.-J. Wang, and E.-P. Li, "MPI-based parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701

6. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate gradient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 05, 159-239, 1991.

7. Peterson, A. F., S. L. Ray, C. H. Chen, and R. Mittra, "Numerical implementations of the conjugate gradient method and the CGFFT for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 05, 241-300, 1991.

8. Gago, E. and M. F. Catedra, "Analysis of finite sized conducting patches in multilayer media using the CG-FFT method and discretizing Green's function in the spectral domain," Progress In Electromagnetics Research, Vol. 05, 301-327, 1991.

9. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," Journal of Electromagnetic Waves and Applications, Vol. 9, 1339-1357, 1995.

10. Xin, Y. F. and P.-L. Rui, "Adaptively accelerated GMRES fast fourier transform method for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 81, 303-314, 2008.
doi:10.2528/PIER08011603

11. Rui, P.-L. and R.-S. Chen, "Implicitly restarted GMRES fast Fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968

12. Fan, Z. H., D. X. Wang, R. S. Chen, and E. K. N. Yung, "The application of iterative solvers in discrete dipole approximation method for computing electromagnetic scattering," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1741-1746, Sep. 2006.
doi:10.1002/mop.21760

13. Rui, P. L., R. S. Chen, Z. H. Fan, E. K. N. Yung, C. H. Chan, Z. Nie, and J. Hu, "Fast analysis of electromagnetic scattering of 3-D dielectric bodies with augmented GMRES-FFT method ," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3848-3852, Nov. 2005.
doi:10.1109/TAP.2005.858833

14. Zhao, L., T.-J. Cui, and W.-D. Li, "An efficient algorithm for EM scattering by electrically large dielectric objects using MR-QEB iterative scheme and CG-FFT method ," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902

15. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Publishing Company, 1996.

16. Xu, X. M. and Q. H. Liu, "Conjugate-gradient nonuniform fast Fourier transform (CG-NUFFT) method for one- and twodimensional media," Microwave and Optical Technology Letters, Vol. 24, No. 6, 385-389, 2000.
doi:10.1002/(SICI)1098-2760(20000320)24:6<385::AID-MOP8>3.0.CO;2-W

17. Liu, Q. H. and X. Y. Tang, "Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT)," Electronics Letters, Vol. 34, No. 20, 1913-1914, Oct. 1, 1998.
doi:10.1049/el:19981372

18. Liu, Q. H. and N. Nguyen, "Accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s)," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 1, 18-20, Jan. 1998.
doi:10.1109/75.650975

19. Liu, Q. H., X. M. Xu, B. Tian, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of differential and integral equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, Part I, 1551-1560, July 2000.
doi:10.1109/36.851955

20. Liu, Q. H., X. M. Xu, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of integral equations," Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 897-904, 2000.

21. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 9, 1757-1766, 1992.
doi:10.1109/22.156602

22. Zhang, Z. Q. and Q. H. Liu, "Three-dimensional weak-form conjugate- and biconjugate-gradient FFT methods for volume integral equations," Microwave and Optical Technology Letters, Vol. 29, No. 5, 350-356, 2001.
doi:10.1002/mop.1176

23. Potts, D. and G. Steidl, "Fast summation at nonequispaced knots by NFFTs," SIAM J. on Sci. Comput., Vol. 24, 2013-2037, 2003.
doi:10.1137/S1064827502400984

24. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM J. Sci. Stat. Comput., Vol. 14, 1368-1393, 1993.
doi:10.1137/0914081

25. Kunis, S. and D. Potts, "Time and memory requirements of the Nonequispaced FFT," Sampling Theory in Signal and Image Processing, Vol. 7, 77-100, 2008.

26. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Transactions on Signal Processing, Vol. 51, No. 2, 560-574, Feb.2003.

27. Morgan, R. B., "GMRES with deflated restarting," SIAM J. Sci. Comput., Vol. 24, 20-37, 2002.

28. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, 2002.

29. Chen, R. S., Z. H. Fan, and E. K. N. Yung, "Analysis of electromagnetic scattering of three-dimensional dielectric bodies using Krylov subspace FFT iterative methods," Source: Microwave and Optical Technology Letters, Vol. 39, No. 4, 261-267, Nov. 20, 2003.

30. Ding, D.-Z., R.-S. Chen, and Z. Fan, "An efficient SAI preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.