
Progress In Electromagnetics Research, PIER 89, 275–289, 2009

WEAK FORM NONUNIFORM FAST FOURIER
TRANSFORM METHOD FOR SOLVING VOLUME
INTEGRAL EQUATIONS

Z. H. Fan, R. S. Chen, H. Chen, and D. Z. Ding

Department of Communication Engineering
Nanjing University of Science and Technology
Nanjing, Jiangsu 210094, China

Abstract—Electromagnetic scattering problems involving inhomoge-
neous objects can be numerically solved by applying a method of mo-
ment’s discretization to the hypersingular volume integral equation in
which a grad-div operator acts on a vector potential. The vector po-
tential is a spatial convolution of the free space Green’s function and
the contrast source over the domain of interest. For electrically large
problems, the direct solution of the resulting linear system is expen-
sive, both computationally and in memory use. Conventionally, the
fast Fourier transform method (FFT) combined Krylov subspace it-
erative approaches are adopted. However, the uniform discretization
required by FFT is not ideal for those problems involving inhomoge-
neous scatterers and sharp discontinuities. In this paper, a nonuniform
FFT method combined weak form integral equation technique is pre-
sented. The method performs better in terms of speed and memory
use than FFT on the configuration involving both the electrically large
and fine structures. This is illustrated by a representative numerical
test case.

1. INTRODUCTION

The scattering of electromagnetic waves by objects of arbitrary
shape is an important research subject. Pioneering works treating
three dimensional arbitrary dielectric bodies are mainly based on
the method of moment (MoM) [1, 2]. The MoM requires O(N2)
computer memory and O(N3) computation time because of the need
to store and invert the MoM matrix [3], where N is the number of
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unknowns in the problem. An important improvement over the MoM
is conjugate gradient — fast Fourier transform method (CG-FFT) [4–
14]. It uses conjugate gradient algorithm (CG), one of the Krylov
subspace iterative approaches [15], to solve the integral equation,
and the required matrix-vector product during the iteration is
efficiently evaluated by using the fast Fourier transform (FFT) scheme.
Compared with the conventional method of moments, this iterative
method is more efficient in terms of the required computer memory
and computation time. In FFT solution, the computer memory
and computation time requirements are O(N) and O(KN log N),
respectively, where K is the number of Krylov subspace iterations. In
spite of the success of these Krylov-subspace iterative FFT methods,
they all require a uniform distribution of the grid points due to
the use of the regular FFT algorithms. This uniform discretization
is not ideal for those problems involving inhomogeneous scatterers
and sharp discontinuities. In particular, when the medium involves
both electrically large and small regions, the FFT method needs to
discretize the problem with a very fine grid in order to accommodate
a detailed description of the electrically small regions. Therefore,
the method wastes an unnecessarily large number of unknowns for
electrically large regions. To overcome this restriction, the nonuniform
fast Fourier transform (NUFFT) algorithm is introduced [16–20].
In [16], the NUFFT is combined with the CG method for one- and
two-dimensional problems with transverse magnetic wave incidence.
However, NUFFT algorithm is difficult to be directly applied for
the case of two-dimensional problems with transverse electric wave
incidence and three-dimensional problems due to the existing of the
higher order singularity of the dyad Green’s function in the integral
equations. In this article, we adopt the idea of the weak-form integral
equations introduced in [21, 22], which leads to a weaker singularity
in the Green’s function, to overcome this restriction. Both FFT
and NUFFT algorithms reduce the CPU time to O(N log2 N) and
computer memory to O(N) [23–26], much smaller than O(N2) by the
MoM. However, the NUFFT method gives the important flexibility
of nonuniform sampling and maintains the computational efficiency
of the conventional FFT method. The poor convergence for iterative
solution is observed when the nonuniform sampling is employed. In this
work, we use Morgan’s deflated restarting generalized minimal residual
method (DRGMRES) [27] to mitigate this problem, and present a
combination of DRGMRES and NUFFT algorithms to solve the three
dimensional volume integral equations.
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2. THEORY

2.1. NUFFT

The considered problem is the fast evaluation of [18, 23, 24]

H(i) =
M/2−1∑

m=−M/2

hmej2πivm i = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1 (1)

With j =
√
−1 denotes imaginary unit and vm ∈ (−1/2, 1/2). In

matrix vector notation this reads

H = Ah (2)

where A is the N ×M nonequispaced Fourier matrix with the element
Aim = ej2πivm . H and h are two vectors with length N and
M , respectively. The straightforward algorithm for computing this
matrix vector product is called non-uniform discrete Fourier transform
(NUDFT). A closely related matrix vector product is the adjoint
NUDFT

ĥm =
N/2−1∑
i=−N/2

Ĥ(i)e−j2πivm (3)

ĥ = AHĤ (4)

where AH denotes the conjugate transpose of the nonequispaced
Fourier matrix A. The NUDFT and the adjoint NUDFT take
O(MN ) arithmetical operations. Using NUFFT calculation technique,
denoting as A = F1(h) and ĥ = FH

1 (Ĥ), the computation of (1) and
(3) can reduce to O(N log N + mM) arithmetic operations. For more
details, the reader can read the references [18, 23-27] for the detailed
knowledge of the non-uniform FFT.

2.2. Volume Integral Equation

We consider the computation of the scattering field from an
inhomogeneous dielectric body to illustrate the application of the
NUFFT-based method in three dimensions. The medium surrounding
the dielectric body is free space and an ejωt dependence is assumed
and suppressed for the field expressions. As shown in Fig. 1, an object
is illuminated by an incident electric field Ei with angular frequency ω
and the inhomogeneous body is characterized by permittivity εr(r)ε0,
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Figure 1. A three dimensional lossy dielectric object placed in free
space illuminated by a plane electromagnetic wave with k̂-direction
incidence.

electric conductivity σ(r) and permeability μ0, here ε0 and μ0 denote
the permittivity and permeability in free space, respectively.

The corresponding volume integral equation [1, 2, 21, 28] can be
written as

E(r) − Ei(r) = Es(r) =
(
k2

0 + ∇∇
)
· A(r), r ∈ V (5)

with k0 = ω
√

μ0ε0 is free space wavenumber, and the magnetic vector
potential is computed as

A(r) =
1

jωε0

∫
V

G(r, r′)J(r′)dV ′. (6)

G is the free space Green’s function given by

G(r, r′) =
exp(−jk0|r − r′|)

4π|r − r′| (7)

and the equivalent volume current density J, which also is called as
contrast source, can be expressed using electric flux density D:

J(r) = jω [ε(r) − ε0]E(r) = jωχ(r)D(r) (8)

with
ε(r) = εr(r)ε0 − j

σ(r)
ω

and χ(r) =
ε(r) − ε0

ε(r)
(9)

From above equations, it can be found that Equation (1) is actually a
Fredholm integral equation of the second kind for the unknown electric
flux density D.

Ei(r) =
D(r)
ε(r)

− (k2
0 + ∇∇) ·

∫
V

G(r, r′)
χ(r′)
ε0

D(r′)dV ′, r′ ∈ V (10)
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Once (10) is solved for D in V by use of method of moments,
Equation (5) can be used to calculate the scattered field everywhere in
space.

2.3. Weak form Testing and Expansion Procedure

From (5) and (10), we can see that the problem of electromagnetic
scattering by a three-dimensional dielectric object can be formulated
in terms of a hypersingular integral equation, in which a grad-div
operator acts on a vector potential A. The vector potential A is
a spatial convolution of the free space Green’s function G and the
contrast source J over the domain of interest. As in [21, 22], a weak
form of the integral equation for the relevant unknown quantity is
obtained by testing it with appropriate testing functions. Then the
vector potential is expanded in a sequence of the appropriate expansion
functions and the grad-div operator is integrated analytically over the
scattering object domain only. The spatial convolution can be carried
out numerically using nonuniform discrete Fourier transforms.

The three dimensional rooftop basis functions are used to discrete
the electric flux density D and the magnetic vector potential A. It
is worthwhile to note that we discrete the electric flux density D
which only resides the space of nonzero electric current J despite it
is practically nonzero in the whole space.

The scatterer domain is embedded in a rectangular block with
a dimension Lx × Ly × Lz, we discretize this block into non-uniform
cuboid cells. To convert (10) into a matrix equation, we expand the
electric flux density and the vector potential in (5) as

D(r) = ε0

3∑
q=1

∑
u,v,w

duvw
q fuvw

q (r) (11)

A(r) =
3∑

q=1

∑
u,v,w

auvw
q fuvw

q (r) (12)

where fuvw
1 , fuvw

2 , and fuvw
3 are vector volumetric rooftop functions

in the x-, y-, and z-directions, respectively. Defined as in [21, 22],
duvw

q and auvw
q are the value of the q component of the electric flux

density and the vector potential at the center of the rooftop functions.
With this choice for the basis functions, the normal component of D
is continuous across all facets of the grid, as required by the boundary
conditions. Furthermore, the contrast function χ is approximated by
a piecewise constant function which assumes one value per cell. Note
that the boundary condition of A is different from the case of the J. A
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has nonzero value in whole space while the contrast source J vanishes
outside the object. Hence in our analysis, the mesh volume should be
larger than the object’s volume since it requires the differential of A
to join the computation.

We then take the Garlerkin technique by testing (5) with fmnk
p (r)

(p = 1, 2, 3). We note the relationship∫
V

fmnk
p (r) · ∇∇ · A(r)dV =

∫
V
∇ ·

[
fmnk
p (r)∇ · A(r)

]
dV

−
∫

V
∇ · fmnk

p (r)∇ · A(r)dV (13)

where ∇ · A(r) is defined by Lorenz gauge condition and equals
to jωμ0ε0φ and φ is scalar electric potential which is continuously
differentiable. Using the divergence theorem and the continuity of
the normal components of φ through the interfaces between these
subdomains, we obtain∫

V

∇ ·
[
fmnk
p (r)∇ · A(r)

]
dV =

∮
S

[
fmnk
p (r)∇ · A(r)

]
· dS = 0 (14)

Hence, we can transfer one del operator from A(r) to fmnk
p (r). The

Garlerkin procedure can be expressed as
∫

V
fmnk
p (r) ·

(
D(r)
ε(r)

− k2
0A(r)

)
dV +

∫
V
∇ · fmnk

p (r)∇ · A(r)dV

=
∫

V
fmnk
p (r) · Einc(r)dV (15)

This is a linear equation group of amnk
q and dmnk

q written as

Pa + Qd = e. (16)

It is not difficult to find that P, Q are sparse matrices with dimensions
N × N ; e is a vector with length N . The relationship between amnk

q

and dmnk
q can be determinate by discretizing the following equation.

A(r) =
1
ε0

∫
V

G(r, r′)χ(r′)D(r′)dV ′ (17)

Note that the integral in (17) is a convolution one, thus it can be
calculated utilizing two continuous forward three-dimensional Fourier
transforms and one continuous inverse three-dimensional Fourier
transform

A =
1
ε0

F−1 {F [G] · F [χD]} (18)
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where F and F−1 denote the forward and inverse Fourier transform,
respectively. It can be calculated using the NUDFT technique and can
be accelerated by NUFFT algorithm.

2.4. Fast Calculation of Convolution Using NUFFT

For the clarity, we take example for one dimensional convolution. In
this scenario, it is to compute:

h(x) =
∫ b

a
g

(
x − x′) f

(
x′)dx′ (19)

where the function f has a finite support of [a, b] and the function g
has an infinite support. Let x = t + a+b

2 , we can get

h

(
t +

a + b

2

)
=

∫ L
2

−L
2

g(t − t′)f(t′)dt′ =
1
2π

∫ ∞

−∞
G(ω)F (ω)e−jωtdω

(20)
For a function f(t) with a support t ∈ [−L/2, L/2], L = b−a

2 , the one
dimensional continuous Fourier transform is defined as

F (ω) =
∫ L/2

−L/2
f(t) exp(jωt)dt. (21)

We expand f(t) with a series of basis functions Bm(t), where
Bm represents Lagrangian interpolation functions. Using the pulse
function

Bm(t) =
{

1, if t ∈ Dm

0, otherwise (22)

as a basis, we have

F (ω) =
M/2−1∑

m=−M/2

f(tm) ·
∫

Dm

Bm(t) exp(jωt)dt (23)

where Dm =
[
tm − Δtm

2 , tm + Δtm+1

2

]
is the support of Bm(t). Here,

tm is the mth location of the sampling points and Δtm is the distance
between tm and tm−1. The relationship among tm, Δtm and Dm are
shown in Fig. 2. Sampling the frequency domain and letting ω = 2π

L i,
i = −N/2, . . . , N/2 − 1, we obtain

F (i) ≈ F1(f) =
M/2−1∑

m=−M/2

Δtmf(tm) exp
[
j
2π

L
itm

]
(24)
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Figure 2. The discretization parameters for one dimensional
nonuniform fast Fourier transform.

It results in the definition of a nonuniform discrete Fourier
transform (NUDFT) of M points as in (1). In a similar way, the
Fourier transform of the Green’s function g, denoted as G(i), can
be calculated by NUFFT algorithms. It is worthwhile to point out
that the discretizations of the space-domain Green’s function and
the electric flux density can be in disagreement, but in the Fourier-
transform domain they are required to coincide with each other. The
arithmetic operation for NUFFT algorithms to compute the above
convolution is O(N log2 N), asymptotically the same as the regular
FFT algorithms. However, it has a promising property of nonuniform
sampling. Note that, in order to perform the linear convolution
through DFT in (19), the truncation support of the Green’s function
should be [−L′, L′], L′ > L, and the above NUFFT lengths are
Mg ≥ 2M and the above NUFFT lengths are N ≥ 2M . Once F (i)
and G(i) are obtained, h(tm) can be calculated by use of the trapezoid
rule with a truncation, that is,

h(tm) ≈ 1
L

N/2−1∑
i=−N/2

G(i)F (i)e−j 2π
L

itm m = −M

2
, . . . ,

M

2
(25)

It can be accelerated using adjoint NUFFT algorithms.

h =
1
L

FH
1 {F1 [g] · F1 [f ]} (26)

From the above analysis, it is easy to obtain the relationship between
Amnk

q and dmnk
q by

amnk
q =

1
ε0LxLyLz

FH
1

{
F1 [G] · F1

[
χmnkdmnk

q

]}
(27)

Note that the NUFFT for the Green’s function needs to be done only
once in the implementation. Substituting (27) into (15), we can obtain
a linear equation group regarding dmnk

q written as

Q′d = e (28)
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This can be iteratively solved with Krylov-subspace iterative methods,
where the matrix-vector product operation is efficiently evaluated
by using NUFFT algorithms. Therefore, the NUFFT retains the
computational efficiency of the FFT combined with Krylov-subspace
iterative methods, but gives the important flexibility of nonuniform
sampling. As expected, the nonuniform discretization leads to a
slow convergence rate. In this paper, a modified version of restart
generalized minimal residual method (GMRES), called DRGMRES, is
chosen to improve the convergence rate. It deflates the eigenvalues
with the smallest moduli by adding the corresponding harmonic Ritz
eigenvectors into the Krylov subspace. Deflation can significantly
improve the convergence of restarted GMRES, and it helps robustness
by allowing the solution of many tough problems that have small
eigenvalues.

3. NUMERICAL RESULTS

We firstly consider a homogeneous dielectric cuboid with side length
Lx = Ly = 0.3 m, Lz = 0.6 m, and relative permittivity εr = 4.0. The
cuboid center is located at the original point as shown in Fig. 3. The
incident plane wave is with the operating frequency at 300 MHz and
with the incident angules θi = 180◦ and φi = 0◦. In order to validate
our three dimensional NUFFT algorithms, the cuboid is discretized
with 16 × 16 × 32 grids, nonuniformly distributed in both x and y
directions as shown in Fig. 4 and uniformly in z direction. The results
for the bistatic radar cross section (RCS) of the cuboid are given in
Fig. 3, and are compared with the solutions using the weak-form FFT
method in [13], which uses equispaced knots. It can be easily found
that our numerical results have an excellent agreement with the weak-
form FFT method. This serves to verify our DRGMRES-NUFFT
implementation.

In the second case, we consider an inhomogeneous dielectric cube
coated with another dielectric material, which is shown in Fig. 5. The
dielectric cube has size length of L = 3 m and its relative permittivity
and conductivity are εr1 = 8.0, σ1 = 0.0030; the thin coated layer
has the thickness a = 0.0328 m and its relative permittivity and
conductivity are εr2 = 4.0, σ2 = 0.0050. The incident plane wave
is with the operating frequency at 100 MHz and incident angules
θi = 180◦ and φi = 0◦. If conventional iterative FFT method is applied,
in order to make sure that there are two grid points located inside the
coating by use of a uniform discretization, a total of 183×183×183 grids
should be needed, and it overloads the common personal computer.
However, only 32 × 32 × 32 grids are required when a nonuniform
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discretization is employed, where two grid points are put inside the
outer coated layer and 30 grids are equally distributed for the inner
region. Applying NUFFT algorithms, the memory requirement is 187
times less than the regular FFT algorithms. While the in our cases, the
computational cost of each NUFFT is twice as fast as the FFT with the
same node [18, 19, 23–26]. Therefore, large memory and computational
cost can be saved due to the flexibility of nonuniform sampling of
NUFFT algorithms. The bistatic RCS results of the coated cube are
displayed in Fig. 4.
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Figure 3. Bistatic RCS of the homogeneous dielectric cuboid problem.

Figure 4. The nonuniform nodes distribution of the x- and y-direction
discretization for the homogeneous dielectric cuboid problem.

Figure 6 shows the convergence histories of GMRES-, BCGSTAB-,
TFQMR-, and DRGMRES-NUFFT methods, we refer the readers
to [12, 15, 29–32] for the details of the GMRES, BCGSTAB, TFQMR
iterative methods. In this case, the dimension of the subspace for
both GMRES and DRGMRES is set to be 30, and 8 approximate
eigenvectors are used in DRGMRES [27] to improve convergence.
The initial guess solution vectors for these iterative methods are all
set as zero vectors. The average CPU time for one matrix-vector
product (MVP) operation is 11.95 second. It can be easily found that
both BCGSTAB and TFQMR do not reach convergence within the
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maximum 5000 iterations. The number of MVPs to reach convergence
is 1591 for GMRES and 804 for DRGMRES, and the CPU time is
19080.4 second and 9867.1 second for them, respectively. It is found
that about two times improvement is achieved for DRGMRES when
compared with the conventional restarted GMRES in terms of MVPs.
When measured in terms of CPU time, the same improvement can
also be obtained. This justifies the use of approximate eigenvectors for
deflated restarting for GMRES method.

Finally, we investigate the sensitivity of the convergence of
DRGMRES to the parameter k, which is the number of approximate
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Figure 5. Bistatic RCS of the coated dielectric cube problem.
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Figure 6. Convergence histories of various methods for the coated
cube problem.
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eigenvectors used for deflated restarting. To address this issue, the
coated cube problem described above is investigated again. Fig. 7
displays the varying convergence property of DRGMRES with respect
to the number of approximate eigenvectors k. It should be noted that
when no eigenvectors are used (i.e., k = 0) DRGMRES is reduced
to the standard restarted GMRES method. As shown in Fig. 5,
the number of MVPs gradually decreases as k increases from 0 to 8.
This indicates that with a small number of eigenvectors for deflated
restarting, the convergence rate of the conventional GMRES method
can be greatly improved. However, as k goes increase to 20, almost
the same convergence is obtained. This is mainly because the gain by
using the approximate eigenvectors compensates the reduction in the
dimension of Krylov-subspace of DRGMRES, which, however, inhibits
convergence.
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Figure 7. Sensitivity of the convergence of DRGMRES to the
parameter k for the coated cube problem.

4. CONCLUSIONS

In this paper, the deflated restarting GMRES (DRGMRES) iterative
method, combined with the weak form nonuniform FFT (NUFFT)
algorithms, is proposed to solve three dimensional volume electric field
integral equations in electromagnetic scattering problems. Numerical
experiments for problems involving both electrically large and fine
regions are conducted, which shows the advantage of the NUFFT over
the conventional FFT methods and the efficiency of DRGMRES for
improving convergence of the standard GMRES.
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