Vol. 88
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-11-25
FDTD Investigation on Bistatic Scattering from a Target Above Two-Layered Rough Surfaces Using UPML Absorbing Condition
By
Progress In Electromagnetics Research, Vol. 88, 197-211, 2008
Abstract
This paper presents an investigation for the electromagnetic scattering characteristic of the 2-D infinitely long target located above two-layered 1-D rough surfaces. A finite-difference time-domain (FDTD) approach is used in this study, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. The upper and lower interfaces are characterized with Gaussian statistics for the height and the autocorrelation function. For the composite scattering of infinitely long cylinder and underlying single-layered rough surfaces as an example, the angular distribution of scattering coefficient with different incident angles is calculated and it shows good agreement with the numerical result by the conventional method of moments. And the influence of some parameters related to the twolayered rough surfaces and target on composite scattering coefficient is investigated and discussed in detail.
Citation
Juan Li, Li-Xin Guo, and Hao Zeng, "FDTD Investigation on Bistatic Scattering from a Target Above Two-Layered Rough Surfaces Using UPML Absorbing Condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102
References

1. Johnson, J. T., "A study of the four-path model for scattering from a target above a half space," Microw. Opt. Techn. Lett., Vol. 30, No. 2, 130-134, 2001.
doi:10.1002/mop.1242

2. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2147-2156, 2007.
doi:10.1163/156939307783152759

3. Li, X. F., Y. J. Xie, and R. Yang, "High-frequency method analysis on scattering from homogenous dielectric objects with electrically large size in half space," Progress In Electromagnetics Research B, Vol. 1, 177-188, 2008.
doi:10.2528/PIERB07103001

4. Chen, X. J. and X. W. Shi, "Backscattering of electrically large perfect conducting targets modeled by NURBS surfaces in half-space," Progress In Electromagnetics Research, Vol. 77, 215-224, 2007.
doi:10.2528/PIER07081602

5. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

6. Wang, X., C. F.Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

7. Rodriguez, P. M., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 961-963, 1999.
doi:10.1109/8.777118

8. Xu, L., Y. C. Guo, and X. W. Shi, "Dielectric half space model for the analysis of scattering from objects on ocean surface," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2287-2296, 2007.
doi:10.1163/156939307783134272

9. Guo, L. X. and C. Y. Kim, "Light scattering models for a spherical particle above a slightly dielectric rough surface," Microw. Opt. Techn. Lett., Vol. 33, No. 2, 142-146, 2002.
doi:10.1002/mop.10259

10. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface," Waves in Random and Complex Media, Vol. 18, No. 4, 641-650, 2008.
doi:10.1080/17455030802302134

11. Zhang, Y. and E. Bahar, "Mueller matrix elements that characterize scattering from coated random rough surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 949-955, 1999.
doi:10.1109/8.774161

12. Fuks, I. M. and A. G. Voronovoch, "Wave diffraction by rough surfaces in an arbitrary plane layered medium," Waves in Random Media, Vol. 10, No. 2, 253-272, 2000.
doi:10.1088/0959-7174/10/2/304

13. Shenawee, M. E., "Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 1, 67-76, 2005.

14. Hu, B. and W. C. Chew, "Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 5, 1028-1038, 2001.
doi:10.1109/36.921421

15. Kuga, Y. and P. Phu, "Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces," Progress In Electromagnetics Research, Vol. 14, 37-88, 1996.

16. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

17. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media," Electromagnetics, Vol. 16, No. 4, 425-449, 1996.
doi:10.1080/02726349608908487

18. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Trans. on Microwave Theory Tech., Vol. 58, No. 5, 582-588, 2000.
doi:10.1109/22.842030

19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 1995.

20. Fung, A. K., M. R. Shah, and S. Tjuatja, "Numerical simulation of scattering from three-dimensional randomly rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 986-995, 1995.
doi:10.1109/36.312887

21. Ruck, G., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum Press, 1970.

22. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 2, John Wiley & Sons, Inc., 2001.