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Abstract—This paper presents an investigation for the electromag-
netic scattering characteristic of the 2-D infinitely long target located
above two-layered 1-D rough surfaces. A finite-difference time-domain
(FDTD) approach is used in this study, and the uniaxial perfectly
matched layer (UPML) medium is adopted for truncation of FDTD
lattices, in which the finite-difference equations can be used for the to-
tal computation domain by properly choosing the uniaxial parameters.
The upper and lower interfaces are characterized with Gaussian statis-
tics for the height and the autocorrelation function. For the compos-
ite scattering of infinitely long cylinder and underlying single-layered
rough surfaces as an example, the angular distribution of scattering co-
efficient with different incident angles is calculated and it shows good
agreement with the numerical result by the conventional method of
moments. And the influence of some parameters related to the two-
layered rough surfaces and target on composite scattering coefficient is
investigated and discussed in detail.

1. INTRODUCTION

In recent years, the composite electromagnetic scattering between the
randomly rough surface and target has attached considerable interest
in the fields of radar surveillance, target tracking, oceanic remote
sensing, etc. However, the study of such electromagnetic scattering
model is a complex and difficult subject due to the complicated
interactions from the target and underlying rough surface. Some
methods have been to deal with the problem, taking for example, the
“four-path” method [1], the image technique [2], the high-frequency
method [3], and the calculation technique based on physical optics
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approximation [4] have been investigated for a target above a flat
surface. The hybrid SPM/MOM technique [5] and the method
of moments [6] are employed to calculate the scattering of target
above on a rough surface. The finite-element method with domain
decomposition and generalized forward-backward method [7, 8] were
analyzed for the electromagnetic scattering from target located above
an ocean-like rough surface. We have also studied the light scattering
from a spherical particle above a slightly rough surface [9] and
the electromagnetic scattering from a target above the rough sea
surface [10].

In all references mentioned above, the rough surface is assumed
to be a single homogeneous layer. The scattering of two-layered rough
surfaces without object are investigated in [11, 12]. Ei-shenawee M.
studied the polarimetric scattering from two-layered random rough
surfaces with and without buried objects [13], and Chew et al. [14]
focus on their research on the scattering characteristic from objects
above the multilayered medium with flat interfaces. However, only
few researchers analyzed the electromagnetic scattering from the target
placed above multilayered rough surfaces. In this paper, the finite-
difference time-domain (FDTD) algorithm with UPML absorbing
boundary is utilized to analyze the electromagnetic scattering from
the 2-D infinitely long target above two-layered 1-D randomly rough
surfaces. The uniaxial perfectly matched layer medium is placed at
the outer extremities of the mesh. In the uniaxial medium the finite-
difference equations are suitable for all the computation domain due
to the field satisfy Maxwell’s equations, which makes the algorithm
convenient and accordant. The paper is organized as follows: the
theoretical formulae of calculating composite scattering field by FDTD
are developed in Section 2. Numerical results of the composite
scattering of target and underlying two-layered rough surfaces are
presented and discussed in Section 3 for different conditions, which
include the dielectric constants of two-layered rough surfaces, the
thickness of upper medium layer, as well as the size and dielectric
constants of target. Section 4 ends with the conclusions of the paper
and proposed the further investigation in this topic.

2. SCATTERING FROM TARGET AND TWO-LAYERED
ROUGH SURFACES

The geometry for 2-D infinitely long target and underlying two-layered
rough surfaces is shown in Fig. 1, where the composite model is
composed of three homogeneous layers: the air, the upper medium
layer with the finite thickness H, and the lower medium layer with
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infinite depth. The upper and lower interfaces are characterized with
Gaussian statistics for the height and the autocorrelation function.
And the target is located at the altitude h from its center to the mean
location of upper rough surface. Let ε1, ε2, ε3, ε4 represent the relative
dielectric constants of the air, the target, the upper medium layer and
the lower medium layer, respectively.
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Figure 1. Geometry for target above two-layered rough surfaces.

2.1. Simulation of Rough Surface and FDTD Model

In this section, the rough interface with Gaussian spectrum in Fig. 1
is simulated by Monte Carlo method. It is assumed that the length
of rough surface is L, the number of the point discretized at equal
interval is N +1, and the distance of two adjacent points is ∆x, where
L = N · ∆x. The altitude of each point xn = n∆x(n = 1, . . . , N) on
the rough surface is defined as [15]

ζ(xn) =
1
L

N/2−1∑
i=−N/2

F (ki)e−jkixn (1)

where, for i ≥ 0

F (ki) = [2πLW (ki)]
1/2 ·

{
[N(0, 1)+jN(0, 1)] /

√
2

N(0, 1)
i �= 0, N/2
i = 0, N/2

(2)

For i < 0, F (ki) = F (k−i)∗, where the asterisk implies complex
conjugate. N(0, 1) is a random variant with a Gaussian distribution of
zero mean and unit variance. ki = 2πi/L, and W (ki) is the Gaussian
power spectrum function, i.e.,

W (ki) = (lδ2/2
√

π)e−k2
i l2/4 (3)

where δ denotes the rms height and l is the correlation length. And
ki is the spatial frequency in the x direction. Usually Equation (1) is
carried out with a Fast Fourier Transform (FFT).
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It is important to know the division of the computation region
with FDTD algorithm in calculating electromagnetic scattering from a
target above two-layered rough surfaces (see Fig. 2). The incident wave
is generated on the connective boundary, and the UPML absorbing
medium is the outer boundary of FDTD region. In addition, output
boundary must be set to do a near-to-far transformation to obtaining
the far fields. In what follows, the three boundaries will be investigated
at length.

Figure 2. Division model of computation region for the FDTD
algorithm.

2.2. UPML Absorbing Boundary

In theory, the computation domain should be unbounded for the
scattered field existing in infinite free space. But no computer can
store an unlimited amount of date. To deal with the conflict, a virtual
absorbing boundary (see Fig. 2) must be built, and the outgoing waves
have to propagate outward without non-physical reflection from the
boundary. There have been many absorbing boundary conditions
developed to implement this in the FDTD method. Where, the UPML
absorbing medium [16, 17] are used to terminate the FDTD lattices,
in which the finite-difference equations can be used for the total
computation domain due to the fields satisfying Maxwell’s equations
(Ampere’s and Faraday’s laws). This makes the algorithm efficient
since one does not have to take special care of the interface plane
between the boundary and the interior regions. In addition, the
uniaxial medium can be perfectly matched to an interior lossy medium
without any modification except for properly choosing the uniaxial
parameters. For the 2-D Maxwell’s equations, only Ez-, Hx-, Hy-field
components (TM case)/Hz-, Ex-, Ey-field components (TE case) are
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nonzero. In the uniaxial medium, the Faraday’s laws for TM waves is
expressed as

∂Ez

∂y
= −jwμ1

sy

sx
Hx

∂Ez

∂x
= jwμ1

sx

sy
Hy

⎫⎪⎪⎬
⎪⎪⎭ (4)

And the Ampere’s laws is

∂Hy

∂x
− ∂Hx

∂y
= (jwε1 + σ1)sxsyEz (5)

where, ε1, μ1, σ1 represent the parameters of interior medium. sx

and sy are only spatially variant along the x and y directions, and
sx = kx + σx/jwε0, sy = ky + σy/jwε0, referring to [16]. In
Equation (4), the intermediate variables Bx and By are introduced
as

Bx =
μ1

sx
Hx By =

μ1

sy
Hy (6)

And in Equation (5), the intermediate variables P ′
z and Pz are inserted

as

P ′
z = sysxEz Pz = P ′

z/sx (7)

Using a Fourier transform where jw → ∂/∂t, the Faraday’s laws
can be transformed into the time domain. Thus the magnetic fields
are obtained by the following relations Ez → Bx, By → Hx, Hy

∂Ez

∂y
= −ky

∂Bx

∂t
− σy

ε0
Bx (8a)

kx
∂Bx

∂t
+

σx

ε0
Bx = μ1

∂Hx

∂t
(8b)

∂Ez

∂x
= kx

∂By

∂t
+

σx

ε0
By (9a)

ky
∂By

∂t
+

σy

ε0
By = μ1

∂Hy

∂t
(9b)

Similarly, for the Ampere’s laws the electric field is deduced by the
relations Hx, Hy → P ′

z → Pz → Ez

∂Hy

∂x
− ∂Hx

∂y
= ε1

∂P ′
z

∂t
+ σ1P

′
z (10a)
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∂P ′
z

∂t
= kx

∂Pz

∂t
+

σx

ε0
Pz (10b)

∂Pz

∂t
= ky

∂Ez

∂t
+

σy

ε0
Ez (10c)

Using central difference approximation, the difference expressions
of Equations (8)–(10) are as follows

B
n+ 1

2
x

(
i, j+

1
2

)
=

ky(m)
Δt − σy(m)

2ε0

ky(m)
Δt + σy(m)

2ε0

· Bn− 1
2

x

(
i, j+

1
2

)

−
1

Δy

ky(m)
Δt + σy(m)

2ε0

· (En
z (i, j+1)−En

z (i, j)) (11)
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2
x

(
i, j+

1
2

)
= H

n− 1
2

x

(
i, j+

1
2

)
+

kx(m)
Δt + σx(m)
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2
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2
x

(
i, j +

1
2

)
(12)
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z
n+1(i, j) =

ε1(m)/Δt − 0.5·σ1(m)
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Pn+1
z (i, j) =

kx(m)/Δt − σx(m)/(2ε0)
kx(m)/Δt + σx(m)/(2ε0)

Pn
z (i, j)

+
1/Δt

kx(m)/Δt+σx(m)/(2ε0)

[
P ′

z
n+1(i, j)−P ′

z
n(i, j)

]
(16)

En+1
z (i, j) =

ky(m)/Δt − σy(m)/(2ε0)
ky(m)/Δt + σy(m)/(2ε0)

En
z (i, j)

+
1/Δt

ky(m)/Δt + σy(m)/(2ε0)
(
Pn+1

z (i, j)−Pn
z (i, j)

)
(17)

where the subscript i and j are the grid point along x and y direction,
and the subscript n is the number of time step. m is denoted as
(i, j +1/2) in Equations (11)–(12), (i+1/2, j) in Equations (13)–(14),
and (i, j) in Equations (15)–(17), respectively. Δx, Δy are the spatial
increments in the x- and y-directions, and Δt is the time increment.
To ensure the stability and accuracy of FDTD algorithm [18], in this
paper, the spatial increment and temporal increment could be set as
Δx = Δy = δ, Δt = 0.5× δ/c, and c is the light speed in vacuum. The
finite- difference equations for the TE waves can be obtained by dual
transformations, which are not presented here.

2.3. Connective Boundary

The connective boundary can divide the computation region into the
total field region and the scattered field region. The total field region
contains the incident field and the scattered field, but the scattered field
region only includes the scattered field [19]. Next, it will be introduced
how the incident wave is generated on the connective boundary.

In Fig. 3, a plane wave of unit amplitude Ei = ẑ exp(j0(k · r +
wt)) (j0 =

√
−1) propagates in the direction of θi relative to y-axis, and

θi represents the incident angle. Let the propagation direction k as y′-
axis, the direction Ei as z′-axis, and build the rectangular coordinate
x′y′z′. The incident wave is computed using the 1-D FDTD method
with the same spatial and temporal steps as the 2-D FDTD method
mentioned above. The incident electric field of a series of points on y′-
axis can be denoted as En

i (p), and p is an integer. Thus, the projection
of any point (i, j) on the connective boundary onto y′-axis is written
as

y1 = iΔx sin θi − jΔy cos θi (18)

However, it is possible that y1 is not an integer and can not correspond
to the node on the y′-axis. Let p = floor(y1), w1 = y1 − p, where



204 Li, Guo, and Zeng

Figure 3. Projection model of the node on the connective boundary
onto the y′-axis.

p represents the maximum integer less than y1. The incident electric
field of any point (i, j) is obtained by linear interpolation

E′
z = (1 − w1) En

i (p) + w1En
i (p + 1) (19)

Similar to the derivation of (19), the incident magnetic field is
expressed as

H ′
x = (1 − w1) Hn

i (p) + w1Hn
i (p + 1) (20)

Thus, in the reference coordinate xyz{
Ez,i (i, j) = E′

z

Hx,i (i, j + 1/2) = −H ′
x cos θi

(21)

After introducing the incident wave, the finite-difference equations
on the connective boundary should be updated as [19]

En+1
z (i, j) = En

z (i, j) +
Δt

ε

[
∇× H

]n+1/2

z

−Δt

ε

H
n+1/2
x,i

(
i, j + 1

2

)
Δy

(22)

Hn+1/2
x

(
i, j +

1
2

)
= Hn−1/2

x

(
i, j +

1
2

)

−Δt

μ

[
∇× E

]n

x
− Δt

μ
·
En

z,i (i, j)
Δy

(23)

In numerical simulations of composite scattering, finite-length
rough surface must be used to model scattering from infinite surface.
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When a plane wave strikes the finite-length rough surfaces, boundary
reflection occurs. One way of minimizing reflection is to construct an
incident wave that tapers to very small values at the surface edges.
Reflection still occurs, but it makes negligible contributions to the
scattered field. To solve this problem, Fung et al. [20] put forward the
Gaussian window function to guard against the truncation effect. And
the Gaussian window function is expressed as

G(x, y) = exp

{
−

[
(x − x0)

2 + (y − y0)
2
] (

cos θi

T

)2
}

(24)

where x0 and y0 are the spatial coordinates at the center of the
connective boundary. T is a constant which determines the width
of the window function, cos θi/T = 2.6/ρm and ρm is the minimum
distance from the center (x0, y0) to the surface edge.

2.4. Output Boundary

The near fields for the composite model of target and underlying two-
layered rough surfaces can be obtained on the basis of theory described
above. As indicated in [19], a way to obtain the far fields is to do a near-
to-far field transformation, which is based on the surface equivalence
theorem. The transform formula for the output boundary is expressed
as

Es = ẑ
1
2

√
j0k

2πr
exp (−j0kr) (−zfz − fmx sinφ) (25)

where, j0 =
√
−1 and k is the incident wave number, k = |k|. r is

the distance from the origin in the reference coordinate to any point
at infinity and z =

√
μ0/ε0 is the impedance. φ represents the angle

between the direction of scattered field and x-axis, where φ = 90◦−θs,
θs is scattered angle (shown in Fig. 3). fz and fmx are the terms which
are related to the equivalent surface electric and magnetic currents [19].
The radar scattering coefficient in the far zone is defined as [21]

σ = lim
r→∞

2πr

L

∣∣Es

∣∣2∣∣Ei

∣∣2 (26)

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, for the composite electromagnetic scattering of
cylinder located above two-layered rough surfaces as an example, the
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angular distribution of scattering coefficient for different conditions are
computed and analyzed in detail. For convenience, some parameters
describing the cylinder and two-layered rough surfaces are measured in
wave length λ. And the length of rough surfaces L = 180λ, the spatial
increment is taken as Δx = Δy = δ = λ/20, the UPML thickness is
5δ. The numerical results presented in the following are the average of
45 Monte Carlo realizations.

In order to ensure the validity of FDTD algorithm presented in
the paper, in Fig. 4, we firstly compute the angular distribution of
bistatic scattering coefficient from a PEC cylinder with radius λ and
altitude of h = 2λ above a single-layered PEC Gaussian rough surface
using the conventional MOM and FDTD, respectively. Where the
parameters related to rough surface is σ = 0.2λ, l = 1.5λ, and the
TM-polarized incidence wave with frequency 0.3 GHz is considered.
The results from the conventional MOM are obtained in [22]. It is
obvious that the angular distribution of scattering coefficient for both
incident angle 30◦ [Fig. 4(a)] and incident angle 60◦ [Fig. 4(b)] by
FDTD is in good agreement with that obtained by MOM except for
the grazing scattering angles, which demonstrates the feasibility and
applicability of FDTD algorithm.
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Figure 4. Comparison of the two different methods for the bistatic
scattering from a PEC cylinder above the single-layered PEC rough
surface (a) θi = 30◦, (b) θi = 60◦.

In Fig. 5, the angular distribution of bistatic scattering coefficient
from the PEC and dielectric cylinder (r = 1.0λ; h = 2.0λ; ε2 = 4−3j0)
above two-layered surfaces (σ1 = 0.2λ, l1 = 1.5λ; σ2 = 0.1λ, l2 = 1.4λ;
H = 2.0λ; ε3 = 2.5 − j00.18, ε4 = 9.8 − j01.2) is investigated for TE
polarization [Fig. 5(a)] and TM polarization [Fig. 5(b)]. Where the
incident angle is θi = 30◦, and the incident frequency 1 GHz. It is clear
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Figure 5. The bistatic scattering coefficient from the PEC/dielectric
cylinder above two-layered rough surfaces (a) TE (b) TM.

that the angular pattern of composite scattering seems to be governed
by two-layered rough surface scattering for different polarizations, this
phenomenon is mainly caused by the fact that the object size is much
smaller than that of the rough surface. It is also found that the
scattering from composite model is much stronger than that of two-
layered rough surfaces only far from the specular direction. In addition,
we observed easily that the bistatic scattering from the PEC cylinder
situated above rough surfaces is greater that that of dielectric cylinder
above rough surfaces in all scattering direction, which results from the
stronger reflection of PEC cylinder without absorption.

To further explore the important scattering characteristics of the
cylinder-rough surface model, Fig. 6 shows the influence of dielectric
constant ε4 of the lower medium layer on the bistatic scattering
coefficient when the dielectric parameter ε3 of upper layer is a constant
equal to 2.5. Fig. 6(a) indicates the result of two-layered rough surfaces
only (σ1 = 0.2λ, l1 = 1.5λ; σ2 = 0.1λ, l2 = 1.4λ; H = 2.0λ), and
Fig. 6(b) is the result with PEC cylinder (r = 1.0λ; h = 2.0λ) located
above two-layered rough surfaces. The value of ε4 in Fig. 6 is set
as 0.5, 1.5, 2.5, 9.8, respectively, and when ε4 is 2.5, the two-layered
rough surfaces can be considered as a single-layered rough surface with
infinite depth. As for the bistatic scattering of rough surfaces only
in Fig. 6(a) is concerned, it can be seen that the bistatic scattering
coefficient when |ε3 − ε4| is small is approach to that of single-layered
rough surface over the whole scattered angular range. Similar result
can be obtained for the scattering of composite model of PEC cylinder
and underlying rough surfaces under the small and moderate scattered
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Figure 6. The bistatic scattering from lossless two-layered rough
surfaces for different ε4 (a) rough surfaces only (b) rough surfaces with
PEC cylinder.
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angles.
In Fig. 7, the influence of the radius of cylinder r on the bistatic

scattering coefficient of the PEC cylinder with the altitude of h = 5λ
above two-layered rough surfaces (σ1 = 0.2λ, l1 = 1.5λ; σ2 = 0.1λ,
l2 = 1.4λ; H = 2.0λ; ε3 = 2.5 − j00.18, ε4 = 9.8 − j01.2) with
TE polarization is also examined. In performing the calculation, the
incident frequency is 3 GHz. It is clear that the bistatic scattering
coefficient of composite model increases with increasing r far from the
specular direction, especially in the large scattering direction. This
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result is mainly due to the fact that the coupled scattering increases
when the coupled area between cylinder and surface becomes greater
with the increase of r, which results in the total bistatic scattering of
composite model increases. That is to say, the power scattered by the
cylinder increases with increasing the size of the PEC cylinder, and so
does the scattering coefficient. In Fig. 8, the dependence of composite
scattering from the cylinder (r = 1.0λ; h = 2.0λ; ε2 = 4 − 3j0) and
two-layered rough surfaces on the thickness H of upper medium is
presented. The parameters of rough surfaces are the same as the those
in Fig. 7 except for H, and the thickness H is 2λ, 6λ, 15λ, respectively.
It can be observed easily that the changes of the angular distribution of
the composite scattering coefficient are “not sensitive” to the thickness
of upper medium layered. In addition, we also investigated the effect
of the altitude of cylinder h on the composite scattering and found
that it is not obvious that the changes of the angular distribution of
composite scattering coefficient versus h.

4. CONCLUSIONS

This paper presents a study of electromagnetic scattering from the
target above the two-layered rough surfaces by using FDTD algorithm.
The basic theory of FDTD method for calculating the scattered field
is developed, including the generation of incident wave, the absorbing
boundary conditions, and a transform from near- to far-field on the
output boundary. And the numerical results of bistatic scattering
from the PEC/dielectric cylinder above two-layered rough surfaces
for different conditions are provided. Future investigation will include
the electromagnetic scattering from the 3-D arbitrary target above 2-
D single-layered rough surface and multilayered rough surfaces, and
electromagnetic scattering from a number of targets above the rough
surface with considering the multiple scattering of the targets.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation
of China (Grant No. 60571058) and the Specialized Research Fund for
the Doctoral Program of Higher Education, China (20070701010).

REFERENCES

1. Johnson, J. T., “A study of the four-path model for scattering from
a target above a half space,” Microw. Opt. Techn. Lett., Vol. 30,
No. 2, 130–134, 2001.



210 Li, Guo, and Zeng

2. Kizilay, A. and S. Makal, “A neural network solution for
identification and classification of cylindrical targets above
perfectly conducting flat surfaces,” J. of Electromagn. Waves and
Appl., Vol. 21, No. 14, 2147–2156, 2007.

3. Li, X. F., Y. J. Xie, and R. Yang, “High-frequency method analysis
on scattering from homogenous dielectric objects with electrically
large size in half space,” Progress In Electromagnetics Research B,
Vol. 1, 177–188, 2008.

4. Chen, X. J. and X. W. Shi, “Backscattering of electrically large
perfect conducting targets modeled by NURBS surfaces in half-
space,” Progress In Electromagnetics Research, PIER 77, 215–224,
2007.

5. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong,
“Electromagnetic wave interaction of conducting object with
rough surface by hybrid SPM/MOM technique,” Progress In
Electromagnetics Research, PIER 22, 315–335, 1999.

6. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, “Electromagnetic
scattering from a circular target above or below rough surface,”
Progress In Electromagnetics Research, PIER 40, 207–227, 2003.

7. Rodriguez, P. M., L. Landesa, J. L. Rodriguez, F. Obelleiro, and
R. J. Burkholder, “The generalized forward-backward method
for analyzing the scattering from targets on ocean-like rough
surfaces,” IEEE Trans. Antennas Propag., Vol. 57, No. 6, 961–
963, 1999.

8. Xu, L., Y. C. Guo, and X. W. Shi, “Dielectric half space model
for the analysis of scattering from objects on ocean surface,” J. of
Electromagn. Waves and Appl., Vol. 21, No. 15, 2287–2296, 2007.

9. Guo, L. X. and C. Y. Kim, “Light scattering models for a spherical
particle above a slightly dielectric rough surface,” Microw. Opt.
Techn. Lett., Vol. 33, No. 2, 142–146, 2002.

10. Li, J., L. X. Guo, and H. Zeng, “FDTD investigation on the
electromagnetic scattering from a target above a randomly rough
a sea surface,” Waves in Random and Complex Media, Vol. 18,
No. 4, 641–650, 2008.

11. Zhang, Y. and E. Bahar, “Mueller matrix elements that
characterize scattering from coated random rough surfaces,” IEEE
Trans. Antennas Propag., Vol. 57, No. 5, 949–955, 1999.

12. Fuks, I. M. and A. G. Voronovoch, “Wave diffraction by rough
surfaces in an arbitrary plane layered medium,” Waves in Random
Media, Vol. 10, No. 2, 253–272, 2000.

13. Shenawee, M. E., “Polarimetric scattering from two-layered two-



Progress In Electromagnetics Research, PIER 88, 2008 211

dimensional random rough surfaces with and without buried
objects,” IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 1,
67–76, 2005.

14. Hu, B. and W. C. Chew, “Fast inhomogeneous plane wave
algorithm for scattering from objects above the multilayered
medium,” IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 5,
1028–1038, 2001.

15. Kuga, Y. and P. Phu, “Experimental studies of millimeter wave
scattering in discrete random media and from rough surfaces,”
Progress In Electromagnetics Research, PIER 14, 37–88, 1996.

16. Gedney, S. D., “An anisotropic perfectly matched layer-absorbing
medium for the truncation of FDTD lattices,” IEEE Trans.
Antennas Propag., Vol. 44, No. 12, 1630–1639, 1996.

17. Gedney, S. D., “An anisotropic PML absorbing media for the
FDTD simulation for fields in lossy and dispersive media,”
Electromagnetics, Vol. 16, No. 4, 425–449, 1996.

18. Juntunen, J. S. and T. D. Tsiboukis, “Reduction of numerical
dispersion in FDTD method through artificial anisotropy,” IEEE
Trans. on Microwave Theory Tech., Vol. 58, No. 5, 582–588, 2000.

19. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-difference Time-domain Method, Artech House,
Boston, 1995.

20. Fung, A. K., M. R. Shah, and S. Tjuatja, “Numerical simulation
of scattering from three-dimensional randomly rough surfaces,”
IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 986–995,
1995.

21. Ruck, G., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum,
Radar Cross Section Handbook, Vol. 1, Plenum Press, New York,
1970.

22. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of
Electromagnetic Waves, Vol. 2, John Wiley & Sons, Inc., USA,
2001.


