Vol. 86
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-21
Localization of Narrow Band Sources in the Presence of Mutual Coupling via Sparse Solution Finding
By
Progress In Electromagnetics Research, Vol. 86, 243-257, 2008
Abstract
Making use of the Toeplitz structure of the mutual coupling matrix of the Uniform Linear Array (ULA), estimating the direction-of-arrival (DOA) of the sources as well as the mutual coupling coefficients of the array can be formulated as a linear inverse problem, where the solution is given by the Kronecker product of the vectors with respect to the DOAs and the mutual coupling coefficients. Through mathematical manipulation, these solution vectors can be decoupled. Estimation of the DOAs is cast into the framework of sparse solution finding. To derive the solution, an alternating minimization technique is presented. The proposed method is firstly developed based on the noise free observation covariance matrix, and can be generalized to directly using the snapshots. Using the proposed method, DOA estimation is feasible even in single snapshot case. The performance of the proposed methods with covariance matrix, single snapshot and multiple snapshots are illustrated by computer simulations. Their ability to resolve closely spaced targets and the applicability to correlated sources have also been demonstrated.
Citation
Ying Zhang, Qun Wan, and An-Ming Huang, "Localization of Narrow Band Sources in the Presence of Mutual Coupling via Sparse Solution Finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703
References

1. Gupta, I. J. and A. A. Ksiensiki, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Trans. on Antennas and Propagation, Vol. 31, 785-791, September 1983.
doi:10.1109/TAP.1983.1143128

2. Abouda, A. A. and S. G. Hggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

3. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
doi:10.2528/PIER07070104

4. Friedlander, B. and A. J. Weiss, "Direction finding in the presence of mutual coupling," IEEE Trans. on Antennas and Propagation, Vol. 39, 273-284, March 1991.
doi:10.1109/8.76322

5. Hung, E. K. L., "A critical study of a self-calibrating direction-finding method for arrays," IEEE Trans. on Signal Processing, Vol. 42, 471-474, February 1994.
doi:10.1109/78.275633

6. Qi, C., Y. Wang, Y. Zhang, and H. Chen, "DOA estimation and self-calibration algorithm for uniform circular array," Electronics Letters, Vol. 41, 1092-1094, 2005.
doi:10.1049/el:20051577

7. Lin, M. and L. X. Yang, "Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 315-318, 2006.
doi:10.1109/LAWP.2006.878898

8. Sellone, F. and A. Serra, "A novel online mutual coupling compensation algorithm for uniform and linear arrays," IEEE Trans. on Signal Processing, Vol. 55, 560-573, February 2007.
doi:10.1109/TSP.2006.885732

9. Rao, B. D., K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado, "Subset selection in noise based on diversity measure minimization," IEEE Trans. on Signal Processing, Vol. 51, No. 3, 760-770, March 2003.
doi:10.1109/TSP.2002.808076

10. Wipf, D. P. and B. D. Rao, "Sparse bayesian learning for basis selection," IEEE Trans. on Signal Processing, Vol. 52, No. 8, 2153-2164, August 2004.
doi:10.1109/TSP.2004.831016

11. Cotter, S. F., B. D. Rao, K. Engan, and K. Kruetz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. on Signal Processing, Vol. 53, No. 7, 2477-2488, July 2005.
doi:10.1109/TSP.2005.849172

12. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. on Signal Processing, Vol. 53, No. 8, 3010-3022, August 2005.
doi:10.1109/TSP.2005.850882

13. Zhang, Y., Q. Wan, M.-H. Wang, and W.-L. Yang, "A partially sparse solution to the problem of parameter estimation of CARD model," Signal Processing, Vol. 88, 2483-2491, 2008.
doi:10.1016/j.sigpro.2008.04.009

14. Zhang, Y., Q. Wan, H.-P. Zhao, and W.-L. Yang, "Support vector regression for basis selection in Laplacian noise environment," IEEE Signal Processing Letters, Vol. 14, No. 11, 871-874, November 2007.
doi:10.1109/LSP.2007.901700

15. Zhang, Y., B. P. Ng, and Q. Wan, "Sidelobe suppression for adaptive beamforming with sparse constraint on beam pattern," Electronics Letters, Vol. 44, No. 10, 615-616, May 2008.
doi:10.1049/el:20080415

16. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 3, 276-280, May 1986.