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Abstract—Making use of the Toeplitz structure of the mutual
coupling matrix of the Uniform Linear Array (ULA), estimating the
direction-of-arrival (DOA) of the sources as well as the mutual coupling
coefficients of the array can be formulated as a linear inverse problem,
where the solution is given by the Kronecker product of the vectors with
respect to the DOAs and the mutual coupling coefficients. Through
mathematical manipulation, these solution vectors can be decoupled.
Estimation of the DOAs is cast into the framework of sparse solution
finding. To derive the solution, an alternating minimization technique
is presented. The proposed method is firstly developed based on
the noise free observation covariance matrix, and can be generalized
to directly using the snapshots. Using the proposed method, DOA
estimation is feasible even in single snapshot case. The performance of
the proposed methods with covariance matrix, single snapshot and
multiple snapshots are illustrated by computer simulations. Their
ability to resolve closely spaced targets and the applicability to
correlated sources have also been demonstrated.

1. INTRODUCTION

In practical antenna arrays, the elements affect each other through
mutual coupling which significantly degrades the performance of the
communication system [1–3]. Therefore, calibration techniques are
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developed to reduce the mutual coupling effects. Some self-calibration
methods have been proposed in previous literatures. In [4], an
eigen-structure based DOA estimation method for arbitrary arrays in
the presence of mutual coupling, gain and phase error is proposed.
However, it has been shown that this method suffers from ambiguity
problem in some conditions [5]. By exploiting the special structure
of the mutual coupling matrix, a self-calibration method for uniform
circular array (UCA) was proposed in [6] and [7], respectively.
Recently, Sellone and Serra presented a novel online mutual coupling
compensation algorithm for ULA [8]. This method performs an
alternating minimization procedure to compensate mutual coupling of
the ULA array. However, the method is suboptimal in that it treats
the mutual coupling matrix M and its conjugate transpose MH as two
independent matrices. Furthermore, this method essentially targets
on calibration of the array instead of DOA estimation. Therefore,
additional DOA estimation procedure is required to locate the targets.

Sparse solution finding [9–11] algorithms have shown promising
performance in the field of array signal processing [12]. Our previous
work have also illustrated its superiority to conventional methods
in spectral estimation [13], DOA estimation in Laplacian noise
environment [14] and array beamforming [15]. In this paper, we
extend sparse solution finding to DOA estimation and mutual coupling
calibration. It is demonstrated that estimation of the DOA and
the mutual coupling coefficients can be converted to a linear inverse
problem. Through some mathematical manipulation, the unknown
vectors with respect to the DOA and the mutual coupling coefficients
can be decoupled. By introducing an over-complete dictionary, the
problem of DOA estimating is realized via sparse solution finding.
The proposed method is originally developed based on the noise free
covariance matrix and is generalized to directly using of the snapshots.
Because the proposed methods are not eigen-structure based, it can
also be used in correlated sources case.

2. PROBLEM FORMULATION

Consider that L far-field narrowband sources impinge on a M -element
ULA from directions θ1, . . . , θL. The complex amplitude of the lth
signal, sl(t), is a complex, low-pass, wide-sense stationary random
process, with zero-mean and variance σ2

l . Take the first element as
the reference. As for the signal with incident angle θ, its time delay
between the mth element and the reference is τm = (m− 1)d sin(θ)/c,
where d denotes the element spacing. Therefore, in the case of ideal
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array, the array signal vector, can be written as

x(t) = As(t) + n(t) (1)

where A = [a(θ1), . . . ,a(θL)] is the so-called array manifold, and
a(θ1) = [1, . . . , exp(j2πfτL)]T is the steering vector. The vector n(t)
denotes the uncorrelated additive noise on the sensors.

Supposing that the sources are uncorrelated with each other, and
independent from the noise, the covariance matrix of the array signal
is given by

Rxx = E
[
xxH

]
= ARssAH + σ2

nIM (2)

where Rss = E[ssH ] =

 σ2
1 . . . 0

0
. . . 0

0 0 σ2
L

.

To take the mutual coupling effect into account, a mutual coupling
matrix Q is included into (1). Accordingly, the array signal vector
and its covariance matrix in the presence of mutual coupling can be
expressed as

y(t) = QAs(t) + n(t) (3)

Ryy = E
[
yyH

]
= QARssAHQH + σ2

nIM = Sy + σ2
nIM (4)

where the noise free covariance matrix of the array signal Sy =
QARssAHQH is defined.

For ULA discussed in this paper, the mutual coupling matrix Q
has symmetric Toeplitz structure [8].

3. THE PROPOSED SPARSE SOLUTION FINDING
ALGORITHM

Making use of the symmetric Toeplitz structure of the matrix Q, Sy

can be vectorized as follows:

vec(Sy) = H (vec (Σs) ⊗ c) (5)

where ⊗ denotes Kronecker product. c = q∗ ⊗
q ∈ CM2×1, H(θ) =

G∗(θ) ⊗ G(θ) ∈ CM2×M2
, and H = [H(θ1), . . . ,H(θL)] ∈ CM2×M2L

are defined. The vector q = [q1, . . . , qM ]T completely specifies Q. The
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matrix G(θ) ∈ CM×M can be computed by the sum of the following
two matrices:

[G1(θ)]ij =

{
[a(θ)]i+j−1 , i + j ≤ M + 1
0, others

[G2(θ)]ij =

{
[a(θ)]i−j+1 , 2 ≤ i ≤ j

0, others

(6)

Using the property of Kronecker product, (5) can be reformulated
as

vec(Sy) = Hc (IM2 ⊗ σs) c = H (IL ⊗ σs) c (7)

where

Hc =
[
h1,hM2+1, . . . ,h(L−1)×M2+1,h2, . . . ,

h(L−1)×M2+2, . . . ,hM2 , . . . ,hL×M2

]
,

hi denotes the ith column of H. IM2 and IL are M2-dimensional and
L-dimensional unity matrix, respectively. σs consists of the diagonal
element of Σs.

Similarly, we may represent (3) as follows:

vec(y(t)) = Gq (IM ⊗ s(t))q + n(t) (8)

where G = [G(θ1), . . . ,G(θL)] and

Gq =
[
g1,gM+1, . . . ,g(L−1)×M+1,g2, . . . ,

g(L−1)×M+2, . . . ,gM , . . . ,gL×M

]
.

To cast the DOA estimation problem into the framework of sparse
solution finding, an over-complete representation of the matrix H
and G in terms of all desired source DOAs are constructed, given
by H̃ =

[
H(θ̃1), . . . ,H(θ̃N )

]
, G̃ =

[
G(θ̃1), . . . ,G(θ̃N )

]
, where N

denotes the number of the angular samplings. Therefore, (7) and (8)
are converted to

vec(Sy) = H̃c (IM2 ⊗ m) c = H̃ (IN ⊗ m) c
vec(y(t)) = G̃q (IM ⊗ s̃(t))q + n(t)

(9)

where m and s̃(t) are sparse vectors, whose ith element is nonzero if
and only if its corresponding θ̃i equals to one of the targets’ DOA.
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To derive the solution to (9), we firstly assume that m and s̃(t)
are fixed, and construct the cost functions as below:

min
c

∥∥∥vec(Sy) − H̃c (IM2 ⊗ m) c
∥∥∥2

2

min
q

∥∥∥vec(y(t)) − G̃q (IM ⊗ s̃(t))q
∥∥∥2

2

(10)

They have closed form solution given by

c =
(
H̃c (IM2 ⊗ m)

)+
vec(Sy)

q =
(
G̃q (IM ⊗ s̃(t))

)+
vec(y(t))

(11)

In (11), + denotes the pseudo-inverse of the matrix.
Secondly, based on the fact that m and s̃(t) are sparse, we use Lp

norm [9] to constrain its sparsity. The cost functions are given by

min
m

∥∥∥vec(Sy) − H̃ (IN ⊗ c)m
∥∥∥2

2
+ λEp(m)

min
s̃(t)

∥∥∥vec(y(t)) − G̃ (IN ⊗ q) s̃(t)
∥∥∥2

2
+ λEp(s̃(t))

(12)

where Ep(·) represents Lp, p ≤ 1 norm which is the diversity
measurement. λ is a positive regularization parameter which controls
the sparsity of the result by giving preference to solutions with small
diversity measurement. Different criteria [9] can be used to determine
it, including quality of fit, sparse criterion and L-curve.

The two procedures are repeated until convergence. Because
the cost functions (12) are usually non-convex [9, 10], a local
minimum might occur. When this happens, the sparse solution finding
algorithms, such as FOCUSS [9], can be re-initialized to solve (12).

The following is the summary of the proposed algorithm.
Initial: m(0), k = 0;

Computing: c(0) =
(
H̃c

(
IM2 ⊗ m(0)

))+
vec(Sy);

Updating:

Wk+1 = diag
(∣∣∣m(k)

∣∣∣1−p/2
)
,

˜̃H(k+1)

W = H̃
(
IN ⊗ c(k)

)
W(k+1),

m(k+1) = W(k+1)

( ˜̃H(k+1)

W

)T
( ˜̃H(k+1)

W

( ˜̃H(k+1)

W

)T

+ λIN

)
vec(Sy),
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c(k+1) =
(
H̃c

(
IM2 ⊗ m(k+1)

))+
vec(Sy),

k = k + 1;

until convergence.
The algorithm is terminated either ‖m(k+1)−m(k)‖2

2/‖m(k)‖2
2 < ε,

has been satisfied, or the number of the iteration exceeds the pre-
specified value, where ε is a preset value.

To derive s̃(t) in single snapshot case, we just need to make the
following substitution to the updating procedure: y(t) → vec(Sy),
G̃ → H̃, G̃q → H̃c, s̃(t) → m and q → c. If multiple snapshots
are available, the iterative algorithm is easy to generalize [11] and is
omitted here.

4. SOME ISSUES ON IMPLEMENTATION OF THE
ALGORITHM

4.1. Computational Loads Consideration

When either the number of the array elements or the angular samplings
is large, the sparse solution algorithm might be time consuming. In
order to alleviate the computational burden, some alternative to the
original algorithm should be implemented.

Firstly, making use of the fact that the covariance matrix Sy is
symmetric, only the upper or lower triangle of is required to form
vec(Sy). Consequently, the number of the rows of the over-complete
dictionary is reduced to M(M+1)

2 . On the other hand, in order to reduce
the number of the angular samplings, a coarse estimation of the DOA
can be used to initialize the proposed algorithm. Also, grid refinement
technique [12] can be implemented.

Secondly, for the ULA considered in this paper, a given element
may be influenced by its nearby elements and the influence from the
others may be neglected. Supposing only the nearest P, P < M
elements are taken into account, the number of the nonzero elements of
c are only P 2. The decrease of the number of the unknown parameters
favors obtaining of the correct estimation.

4.2. Acceleration of the Proposed Sparse Solution Finding
Algorithm

Because the sparse solution finding algorithm is competitive, after
several iterations, some elements in m(k) which correspond to the true
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DOAs may become larger than the others. Based on this observation,
we propose to update m(k+1) as follows:

m̃(k+1) = γm̃(k) + (1 − γ)m(k+1) (13)

where 0 < γ < 1 and

m̃(k) = W̃(k+1)

( ˜̃H(k+1)

W̃

)T
( ˜̃H(k+1)

W̃

( ˜̃H(k+1)

W̃

)T

+ λIN

)
vec(Sy).

W̃(k+1) is calculated using only the L largest values of m(k).
The larger the γ, the faster the sparse solution can be derived.

However, because large value of γ sacrifices the information of m(k+1),
the possibility of obtaining a false solution increases. Empirically,
γ ≤ 0.3 is preferred.

4.3. Scale Uncertainty of the Estimation

From (9), it is easy to note that for any nonzero real value a, (14)
holds.

vec(Sy) = H̃c

(
IM2 ⊗ 1

a
m

)
ac = H̃

(
IN ⊗ 1

a
m

)
ac

vec(y(t)) = G̃q

(
IM ⊗ 1

a
s̃(t)

)
aq + n(t)

(14)

Thus, the derived solution using the proposed algorithm may
be scaled by a constant. This constant can be estimated via â =

1
M2

∑M2

i=1 |ci/c1| or â = 1
P 2

∑P 2

i=1 |ci/c1| under the assumption that the
true mutual coupling coefficient has been normalized with respect to
the first sensor (reference).

5. COMPUTER SIMULATIONS

In this section, some computer simulations are conducted to verify the
validation of the proposed methods.

In all simulations, the methods derived in Section 3 are named
Covariance Based Method (CBM), Single-snapshot Based Method
(SBM) and Multiple-snapshot Based Method (MBM), respectively.

We consider an ULA array with eight sensors separated by d =
λ/2, where λ denotes the wavelength corresponding to the operating
frequency of the narrow band sources. The sampling grid for generating
the over-complete dictionary is uniform with 1◦ interval.
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Case 1): Two closely spaced correlated narrow band sources in
the far field impinge on the array from 31◦ and 37◦, respectively. As
for a given element, four nonzero mutual coupling coefficients are taken
into account, i.e., P = 4. The mutual coupling coefficients are set to
be 0.6 + 0.4j for the elements which are d apart, and 0.2− 0.1j for the
elements which are 2d and 3d apart.

Case 2): Three correlated narrow band sources with DOA 31◦,
54◦ and 71◦ are assumed. Based on the necessary condition for a unique
solution [8], we set P = 3 in this case, i.e., the mutual coefficients with
the sensors which are 3d and more apart are neglected. The values of
the coefficients are identical to those in Case 1.

5.1. Capability to Resolve Closely Spaced Sources

The signal-to-noise ration (SNR) is chosen to be 10 dB. 20 snapshots
were used. With the experimental parameters given in Case 1 and
Case 2, the proposed three algorithms were conducted.

The estimated spatial spectrum for case 1 is depicted in Fig. 1. It
is noted that the peak of the uncalibrated MUSIC [16] spatial spectrum
deviates from the true position due to the impact of the mutual
coupling. Meanwhile, MUSIC is incapable to resolve the two targets.
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Figure 1. Estimated spatial spectrum with the proposed method
compared with the uncalibrated MUSIC spectrum. Two closely spaced
targets and four nonzero mutual coupling coefficients were assumed.
(Case 1)
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As the comparison, the proposed methods perform much better, in
which CBM and MBM are capable of either locating the peaks of the
spatial spectrum or resolving the two targets. As for the SBM, it can
not distinguish the two closely spaces sources. However, it may provide
initial guess for the other algorithms and favors their implementation.
When the targets are not very close to each other, the situation
becomes somewhat better for SBM. As the Fig. 2 demonstrates, all
of the proposed methods can locate the three targets, in which CBM
and MBM perform better.
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Figure 2. Estimated spatial spectrum with the proposed method
compared with the uncalibrated MUSIC spectrum. Three targets and
three nonzero mutual coupling coefficients were assumed. (Case 2)

5.2. Capability to Estimate c with Respect to the Coupling
Coefficients

The method CBM is considered in this experiment. The capability of
CBM to estimate the vector c is validated via computer simulations
with parameters given in Case 1. The SNR is set to 10 dB.

There are 42 = 16 nonzero elements in c. However, according
to the assumed mutual coupling coefficients, some elements share
identical phase. It can be counted that 9 distinct phases appear. The
convergence routes of the phase of these 9 nonzero elements are shown
in Fig. 3. More specifically, Fig. 4 presents the convergence route for
c2, c3, c11 and c26, i.e., q∗1q2, q

∗
1q3, q

∗
2q3 and q∗4q2. The algorithm was
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Figure 3. The convergence route of the phase of the nonzero
elements of c. The phase is calculated as ρ

(k)
i = ∠(c(k)

i /c
(k)
1 ), i =

1, . . . , 16; k = 0, . . . , 49. The squares and the circles denote ρ
(0)
i and

ρ
(49)
i , respectively. The asterisks denote the true phases of c.
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The convergence route of the phase of the 2nd,3rd,11thand 26th element of c

30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4. The convergence route of the phase of c2, c3, c11 and c26.
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terminated after 50 iterations. It is noted from Fig. 3 that the phase of
the nonzero elements converges to the true value as the iteration goes
on.

It is noted from Fig. 5 that as for the true c, the scaled amplitudes
for all of the 16 nonzero elements are identical to 1. The closer the
estimated scaled amplitudes to 1, the better the derived estimation. It
is observed that when the algorithm terminates, the estimated scaled
amplitudes are very close to 1. Therefore, good convergence result is
achieved.
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The convergence of the amplitude of the coupling coeffecients, 50 iterations

Figure 5. The convergence route of the scaled amplitude of the
nonzero elements of c. The scaled amplitude is calculated as α

(k)
i =

|c(k)
i /c

(k)
1 |/|ci|, i = 1, . . . , 16; k = 0, . . . , 49, where |ci| denotes the true

element of c. The squares and the circles denote α
(0)
i and α

(49)
i ,

respectively. The asterisks denote the true scaled amplitude of c.

5.3. The Correct Estimation Percentage

Since the sparse finding algorithm does not guarantee global minimum
for every realization, we test its average performance in this simulation.
Case 2 is used for this purpose and 100 independent trials were
conducted.

Figure 6, Fig. 7 and Fig. 8 present the estimation bias using CBM,
SBM and MBM with SNR equal to 10 dB, respectively. It is noted
that large bias did happen, but the percentage is very low compared
with the correct estimation. As discussed above, the algorithm can
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be re-initialized when the wrong estimation happens. To increase the
accuracy of the estimation results, grid refinement technique [12] can
be implemented, i.e., finer sampling grids can be used to generate the
over-complete dictionary, and the searching region can be restricted
to the neighbor of the coarse estimation. Accordingly, the derived
estimation might be less biased.
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Figure 6. The distribution of the estimation bias via CBM.

-6 -4 -2 0 2 4 6 8 10 12 14
0

50

The distribution of the estimation bias:θ
1
-31 o

-6 -4 -2 0 2 4 6 8 10 12 14
0

50

The distribution of the estimation bias:θ
2
-54 o

-6 -4 -2 0 2 4 6 8 10 12 14
0

50

The distribution of the estimation bias:θ
3
-71 o

Figure 7. The distribution of the estimation bias via SBM.
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Figure 8. The distribution of the estimation bias via MBM.

6. CONCLUSIONS

In this paper, we cast the problem of localization of narrow band
sources in the presence of mutual coupling into the framework of sparse
solution finding. The proposed alternating minimization technique is
applicable for noise free covariance matrix as well as the observation
data, where single snapshot and multiple snapshots can both be used.
Because the proposed methods are not eigen-structure based, they can
be used for correlated sources. Computer simulations show that the
proposed methods are capable of resolving closely spaced targets and
do not require large number of snapshots. When the targets are not
closely spaced, single snapshot is enough for the correct estimation
via the proposed method. Although sparse solution finding suffers
from local minimum convergence, simulations have shown that these
occasions seldom occur.
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