Vol. 85
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-18
Size Based Throughput Optimization of Dly-Ack Over the IEEE 802.15.3 Networks
By
Progress In Electromagnetics Research, Vol. 85, 115-131, 2008
Abstract
In this paper we study on the one hand under delayedacknowledgement (Dly-ACK) mechanisms the option of using ACK Request to improve system robustness, and on the other hand the incorporation of effective retransmission schemes such as hybrid automatic repeat request (HARQ) to improve system throughput for an IEEE 802.15.3 compliant system. An expression of throughput is derived in terms of system parameters and channel conditions. A constrained optimization problem for system throughput is formulated. It is then solved numerically due to the high degree of nonlinearity in the payload size. Our results indicate that under poor channel conditions, the optimal throughput under HARQ scheme is significantly higher than that with ARQ, and larger payload size is proposed to further improve the performance.
Citation
Rufeng Lin, Yang Du, Lu Rong, and Bae-Ian Wu, "Size Based Throughput Optimization of Dly-Ack Over the IEEE 802.15.3 Networks," Progress In Electromagnetics Research, Vol. 85, 115-131, 2008.
doi:10.2528/PIER08082601
References

1. IEEE Standard 802.15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), Sept. 2003.
doi:10.1109/TCE.2006.1605035

2. IST-2004-507102, My personal Adaptive Global NET (MAGNET). http://www.ist-magnet.org .
doi:10.1109/TCE.2005.1467997

3. IEEE P802.15-04/0137r1, DS-UWB physical layer submission to 802.15 Task Group 3a, Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), 2004.
doi:10.1109/TCE.2003.1209518

4. IEEE P802.15-03/268r3, multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, Project: IEEE P802.15Working Group for Wireless Personal Area Networks(WPANs), 2004.
doi:10.2528/PIERB07121903

5. Kim, J., S. Lee, Y. Jeon, and S. Choi, "Residential HDTV distribution system using UWB and IEEE 1394," IEEE Trans. Consum. Electron., Vol. 52, 116-122, Jan. 2006.
doi:10.2528/PIER08011402

6. Lee, C. S., D. J. Cho, Y. H. You, and H. K. Song, "A solution to improvement of DS-UWB system in the wireless home entertainment network," IEEE Trans. Consum. Electron., Vol. 51, 529-533, May 2005.
doi:10.2528/PIER07082501

7. Park, H. J., M. J. Kim, Y. J. So, Y. H. You, and H. K. Song, "UWB communication system for home entertainment network," IEEE Trans. Consum. Electron., Vol. 49, 302-311, May 2003.
doi:10.2528/PIER06122105

8. Noori, N. and H. Oraizi, "Evaluation of mimo channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.
doi:10.2528/PIER06072803

9. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER06050801

10. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission ," Progress In Electromagnetics Research , Vol. 77, 329-342, 2007.
doi:10.2528/PIER05090801

11. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.1163/156939307783134317

12. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.1163/156939307783134281

13. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on MIMO channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.1163/156939307783152966

14. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.

15. Hua, J., L. Meng, and Z. Xu, "A new method for SNR and Doppler shift estimation in wireless propagations," Journal of Electromagnetic Waves and Applications, Vol. 21, 2431-2441, 2008.
doi:10.1163/156939307780667265

16. Jeong, Y.-S. and J.-H. Lee, "Estimation of time delay using conventional beamforming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, 2413-2420, 2008.
doi:10.2528/PIER08040502

17. Liu, Y.-J., Y.-R. Zhang, and W. Cao, "A novel approach to the refraction propagation characteristics of UWB signal waveforms," Journal of Electromagnetic Waves and Applications,, Vol. 21, 1939-1950, 2007.
doi:10.2528/PIER08040202

18. Gopikrishna, M., D. D. Krishna, A. R. Chandran, and C. K. Aanandan, "Square monopole antenna for ultra wide band communication applications," Journal of Electromagnetic Waves and Applications, Vol. 21, 1525-1537, 2007.
doi:10.1109/TVT.2005.863432

19. Abouda, A. A., H. M. El-Sallabi, L. Vuokko, and S. G. Haggman, "Spatial smoothing effect on Kronecker MIMO channel mode in urban microcells," Journal of Electromagnetic Waves and Applications, Vol. 21, 681-696, 2007.
doi:10.1109/TVT.2007.904547

20.. Roozbahani, M. G., E. Jedari, and A. A. Shishegar, "A new link-level simulation procedure of wideband MIMO radio channel for performance evaluation of indoor WLANs," Progress In Electromagnetics Research, Vol. 83, 13-24, 2008.
doi:10.1109/26.87182

21. Kim, J.-H., Y.-H. You, K.-I. Lee, and J.-H. Yi, "Pilot-less synchronization receiver for UWB-based wireless application," Progress In Electromagnetics Research, Vol. 83, 119-131, 2008.
doi:10.1109/JSAC.2005.863862

22. Chen, H., Z. Guo, R. Y. Yao, X. Shen, and Y. Li, "Performance analysis of delayed acknowledgment scheme in UWB-based highrate WPAN ," IEEE Trans. Veh. Technol., Vol. 55, 606-621, Mar. 2006.
doi:10.1109/18.930931

23. Liu, K. H., H. Rutagemwa, X. Shen, and J. W. Mark, "Efficiency and goodput analysis of Dly-ACK in IEEE 802.15.3," IEEE Trans. Veh. Technol., Vol. 56, 3888-3898, Nov. 2007.

24. Shacham, N. and D. Towsley, "Resequencing delay and buffer occupancy in selective repeat ARQ with multiple receivers," IEEE Trans. Commun., Vol. 39, 928-937, June 1991.
doi:10.1109/TWC.2004.843012

25. Xiao, Y., X. Shen, and H. Jiang, "Optimal ACK mechanisms of the IEEE 802.15.3 MAC for ultra-wideband systems," IEEE J. Sel. Areas Commun., Vol. 24, 836-842, Apr. 2006.

26. Caire, G. and D. Tuninetti, "The throughput of hybrid-ARQ protocols for the Gaussian collision channel," IEEE Trans. Inf. Theory, Vol. 47, 1971-1988, July 2001.

27. Bosisio, R., U. Spagnolini, and Y. Bar-Ness, "Multilevel type-II HARQ with adaptive modulation control," Prop. IEEE WCNC’06, Vol. 4, 2082-2087, Apr. 3–6, 2006.

28. Zheng, H. and H. Viswanathan, "Optimizing the ARQ performance in downlink packet data systems with scheduling," IEEE Trans. Wireless Commun., Vol. 4, 495-506, Mar. 2005.