Vol. 83
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-06-10
Weights Optimization of Neural Network via Improved BCO Approach
By
Progress In Electromagnetics Research, Vol. 83, 185-198, 2008
Abstract
Feed forward neural Network (FNN) has been widely applied to many fields because of its ability to closely approximate unknown function to any degree of desired accuracy. Back Propagation (BP) is the most general learning algorithms, but is subject to local optimal convergence and poor performance even on simple problems when forecasting out of samples. Thus, we proposed an improved Bacterial Chemotaxis Optimization (BCO) approach as a possible alternative to the problematic BP algorithm, along with a novel adaptive search strategy to improve the efficiency of the traditional BCO. Taking the classical XOR problem and sinc function approximation as examples, comparisons were implemented. The results demonstrate that our algorithm is obviously superior in convergence rate and precision compared with other training algorithms, such as Genetic Algorithm (GA) and Taboo Search (TS).
Citation
Yudong Zhang, and Lenan Wu, "Weights Optimization of Neural Network via Improved BCO Approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403
References

1. Mohamed, M. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

2. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

3. Ayestar, R. G. and F. Las-Heras, "Near filed to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

4. Ayestar, R. G., F. Las-Heras, and J. A. Martinez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1001-1011, 2007.

5. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2147-2156, 2007.
doi:10.1163/156939307783152759

6. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

7. Panda, D. K. and A. Chakrabarty, "Multiple cavity modeling of a feed network for two dimensional phased array application," Progress In Electromagnetics Research Letters, Vol. 2, 135-140, 2008.

8. Engoziner, S. and E. Tomsen, "An accelerated learning algorithm for multiplayer perception: Optimization layer by layer," IEEE Trans. on Neural Network, Vol. 6, 31-42, 1995.

9. Lawrence, S., A. C. Tsoi, and C. L. Giles, Noisy time series prediction using symbolic representation and recurrent neural network grammatical inference, Technical report UMIACS-TR-96-27 and CS-TR-3625, Institute for Advanced Computer Studies, University of Maryland, 1996.

10. Miao, K., F. Chen, and Z. G. Zhao, "Stock price forecast based on bacterial colony RBF neural network," Journal of QingDao University, Vol. 20, 50-54, 2007.

11. Engoziner, S. and E. Tomesn, "An accelerated learning algorithm for multiplayer perception: Optimization layer by layer," IEEE Trans. on Neural Network, Vol. 6, 31-42, 1995.

12. Sexton, R. S., B. Alidaee, R. E. Dorsey, and J. D. Johnson, "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Vol. 106, 570-584, 1998.
doi:10.1016/S0377-2217(97)00292-0

13. Sexton, R. S., R. E. Dorsey, and J. D. Johnson, "Toward global optimization of neural networks: A comparison of the genetic algorithm and back-propagation," Decision Support System, Vol. 22, 171-185, 1998.
doi:10.1016/S0167-9236(97)00040-7

14. Chiu, C.-C. and T.-C. Tu, "Path loss reduction in an urban area by genetic algorithms," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 319-330, 2006.
doi:10.1163/156939306775701696

15. Tian, Y.-B. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090

16. Lu, Y.-Q. and J.-Y. Li, "Optimization of broadband top-load antenna using micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 793-801, 2006.
doi:10.1163/156939306776143370

17. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

18. Tsaih, R., Y. Hsu, and C. C. Lai, "Forecasting S&P 500 stock index futures with a hybrid AI system," Decision Support System, Vol. 23, 161-174, 1998.
doi:10.1016/S0167-9236(98)00028-1

19. Kohara, K., T. Ishikawa, Y. Fukuhara, and Y. Nakamura, "Stock price prediction using prior knowledge and neural networks," Int. J. Intelligence System Accounting Finance Manage, Vol. 6, 11-12, 1997.
doi:10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3

20. Gao, X. J., "Artificial neural network based on niche genetic algorithm applies to stock price prediction," Market Modernization, Vol. 500, 35, 2007.

21. Chen, F., Y. H. Chen, and J. Z. Zhang, "Stock index modeling using IP based gene expression programming," Computer Engineering and Applications, Vol. 43, 227-229, 2007.

22. Majhi, R. and G. Panda, "Stock market prediction of S&P 500 and DJIA using bacterial foraging optimization technique," IEEE Congress on Evolutionary Computation, 2007.

23. He, Y., Y. H. Qiu, G. Liu, and K. Y. Lei, "Optimizing weights of neural network using an adaptive tabu search approach," Proc. ISNN 2005, LNCS 349, 672-676, 2005.

24. Ayestaran, R. G., J. Laviada-Martinez, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2123-2135, 2006.
doi:10.1016/0016-0032(74)90041-6

25. Bremermann, H. J., "Chemotaxis and optimization," J. Franklin Inst., Vol. 297, 397-404, 1974.

26. Sibylle, D. M., M. Jarno, A. Stefane, et al. "Optimization based on bacterial chemotaxis," IEEE Trans. on Evolutionary Computation, Vol. 6, 17-19, 2002.
doi:10.1002/jss.400040304

27. Dahlquist, F. W., R. A. Elwell, and P. S. Lovely, "Studies of bacterial chemotaxis in defined concentration gradients — A model for chemotaxis toward l-serine," J. Supramolecular Structure, Vol. 4, 329-342, 1976.
doi:10.1023/B:GEGE.0000025044.72718.db

28. Basma, A. A. and N. Kallas, "Modeling soil collapse by artificial neural networks," Geotechnical and Geological Engineering, Vol. 22, 427-438, 2004.

29. Dong, H. K., A. Ajith, and H. C. Jae, "A hybrid genetic algorithm and bacterial foraging approach for global optimization," Information Sciences, Vol. 177, No. 3918, 2007.

30. Passino, K. M., "Biomimicry of bacterial foraging for distributed optimization and control," IEEE Control System Magazine, Vol. 6, 52-67, 2007.

31. Li, W. W., H. Wang, Z. J. Zou, and J. X. Qian, "Function optimization method based on bacterial colony chemotaxis," Journal of Circuits and Systems, Vol. 10, 58-63, 2005.