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Abstract—Feed forward neural Network (FNN) has been widely
applied to many fields because of its ability to closely approximate
unknown function to any degree of desired accuracy. Back Propagation
(BP) is the most general learning algorithms, but is subject to
local optimal convergence and poor performance even on simple
problems when forecasting out of samples. Thus, we proposed
an improved Bacterial Chemotaxis Optimization (BCO) approach
as a possible alternative to the problematic BP algorithm, along
with a novel adaptive search strategy to improve the efficiency of
the traditional BCO. Taking the classical XOR problem and sinc
function approximation as examples, comparisons were implemented.
The results demonstrate that our algorithm is obviously superior
in convergence rate and precision compared with other training
algorithms, such as Genetic Algorithm (GA) and Taboo Search (TS).

1. INTRODUCTION

Multi-layer Feed forward Neural Network (FNN) is the most popular
and widely applied Neural Network (NN) due to is superior ability
of non-linearity to approximate unknown function to any degree of
desired accuracy, which has been widely applied to many fields,
such as pattern recognition, image processing, financial prediction,
and signal and information processing, especially in the filed of the
Electromagnetics: Mohamed used RBF to optimize and characterize
the electromagnetical coupled patch antennas [1]. Geney used neural
networks (NN) to calculate the characteristic impedance of air-
suspended trapezoidal and rectangular-shaped microshield lines [2].
Ayestar chose NN and source reconstruction to transform the near field
to far filed [3] and synthesize non uniform-antenna array [4]. Kizilay
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adopt NN to identify and classify the cylindrical targets [5]. Zainud-
Deen applied RBF to estimate the direction of arrival and the state
of polarization [6]. Panda applied FNN to simulate a multiple cavity
model of 2D phased array [7].

In order to hasten the convergence of NN, most applications of
FNNs use some variation of the gradient technique, such as Back
Propagation (BP) to optimize the coefficients of NN [8]. However,
Lawrence et al. [9] pointed out that, when the training of a BP tends
to be difficult due to the noise of data, then the networks fall into
a näıve solution such as always predicting the most common output.
Miao et al. [10] indicated that the BP solutions are usually forced to
the local minimum due to the gradient descent algorithm used to get
weights of connections. Engoziner et al. [11] presented that BP use
some variation of the gradient technique, which is essentially a local
optimizing method and thus has some inevitable drawbacks, such as
easily trapping into the local optimal and dissatisfying generalization
capability. Sexton et al. [12] proposed the fact that the gradient
descent algorithm may perform poorly even on simple problems
when predicting the holdout data. And document [13] suggested
that, in interest of mitigating the above limitation, weighted values
and thresholds of neurons in BP are optimized by global search
algorithms. Artificial Intelligence (AI) is a powerful global search
algorithm, which had been widely used in electromagnetics. Chiu
employed genetic algorithm (GA) to reduce path loss in urban area
[14]. Tian employed GA on ultraconveniently finding multiple solutions
of complex transcendental [15]. Lu betaked GA to optimize the
broadband top-load antenna [16]. Chen betaked GA to image 3D
buried objects [17]. From papers above, it is obvious that AI is a
mighty tool for optimization.

Consequently, newly research tends to hybridize several artificial
intelligence (AI) techniques to improve the performance. Tsaih et
al. [18] integrated the rule-based technique and ANNs. Kohara et al.
[19] incorporated prior knowledge, Gao [20] incorporated Niche Genetic
Algorithm (NGA), and Chen et al. [21] united Immune Programming
(IP) and Gene Expression Programming (GEP) to improve the learning
process of the conventional ANN. Miao et al. [10] adopted Bacterial
Colony Radial Basis Function Neural Network (RBFNN) and Majhi et
al. [22] utilized Bacterial Foraging Optimization (BFQ) to ameliorate
the performance of traditional ANN. He et al. [23] presented an
adaptive Tabu Search (TS) approach as a possible alternative to the
BP algorithm. Ayestaran [24] bestowed genetic-neural hybrid method
(GN) to synthesize the passive-dipole arrays.

In recent years, the popularity of Bacterial Chemo-taxis
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Optimization (BCO) has grown significantly as a new global search
technique and it has achieved widespread success in solving practical
optimization problems in different domains [25–27]. This article
extended the line of the research by applying an improved BCO
(IBCO for short) strategy to the difficult problem of NN optimization.
Taking the classical XOR problem and sinc function approximation
as tests. The results show that our BCO algorithm is obviously
superior in convergence, precision, and generalization compared with
the traditional BP algorithms.

2. THE ERROR BACK-PROPAGATION NEURAL
NETWORK

BP, one of the most popular techniques in the filed of NN, is a kind
of supervised learning neural network, the principle behind which
involves using the steepest gradient descent method to reach any small
approximations. A general model of the BP has a structure depicted
in Figure 1.
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Figure 1. The architecture of BP.

Here we can see there are three layers contained in BP: input layer,
hidden layer, and output layer. Two nodes of each adjacent layer are
directly connected, which is called a link. Each link has a weighted
value, which presents the relational degree between two nodes [28].
Assume that there are n input neurons, m hidden neurons, and 1
output neuron, from which we can infer the training process described
by the following equations to update these weighted values, which can
be divided into two steps:

I) Hidden layer stage: The outputs of all neurons in the hidden
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layer are calculated by following steps:

netj =
n∑

i=0

vijxi j = 1, 2, · · · ,m (1)

yj = fH(netj) j = 1, 2, · · · ,m (2)

Here netj is the activation value of the jth node, yj is the output of
the hidden layer, and fH is called the activation function of a node,
usually a sigmoid function as follows:

fH(x) =
1

1 + exp(−x)
(3)

II) Output Stage: The outputs of all neurons in the output layer are
given as follows:

O = fO


 m∑

j=0

ωjkyj


 (4)

Here fO is the activation function, usually a line function. All weights
are assigned with random values initially, and are modified by the delta
rule according to the learning samples traditionally.

3. CONVENTIONAL BACTERIAL CHEMOTAXIS
OPTIMIZATION

The optimization based on Bacterial Chemotaxis [25, 26] (BC) was in-
spired from bacterial foraging behavior, pioneered by Bremermann [25]
and his coworkers, and proposed by analogy to the way bacteria react
to chemo-attractants in concentration gradients. Sibylle D Muller [26]
extracted the BC algorithm from the newest production found in biol-
ogy field, which was testified to excel other optimization algorithms.

3.1. Description of the 2-D Model

Dahlquist et al. [26, 27] model the motion of a single bacterium in two
dimensions by making the following assumptions.
1) The path of a bacterium is a sequence of straight-line trajectories.
2) All trajectories have the same constant speed.
3) When a bacterium turns, its choice of the new direction, the

angle between two successive trajectories, and the duration of a
trajectory are all regulated by a probability distribution.

4) The probability distributions for both the angle and the duration
are independent of parameters of the previous trajectory.
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3.2. Algorithm Steps of BCO

The processing of BCO is presented as follows:
STEP1: Compute the velocity of a bacterium v, which is assumed

to be a scalar constant value 1.
STEP2: Compute the duration of the trajectory τ , the

distribution of which satisfies the exponential probability density
function (PDF)

P (X = τ) =
1
T

exp
(
− τ

T

)
(5)

where the expectation value E(X) = T and the variance V ar(X) = T 2.
The time T is given by

T =




T0, for
fpr

lpr
≥ 0

T0

(
1 + b

∣∣∣∣fpr

lpr

∣∣∣∣
)
, for

fpr

lpr
< 0

(6)

where T0 presents the minimal mean time; fpr presents the difference
between the actual and the previous function value; lpr presents the
vector connecting the previous and the actual position in the parameter
space; and b is assumed as the dimensionless parameter.

STEP3: Compute the new direction. The PDF of the angle α
between the previous and the new direction is Gaussian and read, for
turning right or left, respectively as follows:

P (X = α, v = ±µ) =
1√
2πσ

exp
[
−(α− v)2

2σ2

]
(7)

where, the expectation value µ = E(X) and variance σ =
√
V ar(X)

are given by:
If fpr

lpr
< 0, and then

µ = 62◦(1 − cos θ); σ = 26◦(1 − cos θ); cos θ = exp(−τcτpr) (8)

Else fpr

lpr
≥ 0, and then µ = 62◦, σ = 26◦.

Where τc presents the correlation time, and τpr presents the
duration of the previous step. The choice of a right or left direction
as referring to the previous trajectory is determined using a uniform
PDF, thereby yielding a PDF for the angle α

P (X = α) =
1
2

[P (X = α, v = µ) + P (X = α, v = −µ)] (9)
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STEP4: Compute the new position,

xnew = xold + nul (10)

Here, xnew presents the new position of the bacteria; xold presents its
previous position; nu presents the normalized new direction vector;
and l presents the length of the new trajectory.

In summary, the algorithm contains the following parameters to be
computed in advance: T0, τc and b. Document [26] gives their detailed
formula

T0 = ε0.3010−1.73; b = T0

(
T−1.54

0 100.60
)
; τc =

(
b

T0

)0.31

101.16 (11)

4. AN IMPROVED BCO STRATEGY

4.1. Mechanism of the Improvement

In the optimization of BCO, every bacterium imparts information each
other for ameliorating the foraging environment, nevertheless it will
beget the whole colony to fall into local nutrients [29] and debilitated
to cross over noxious substance. As to the algorithm, it means the
searching will be trapped into local extrama.

No life-form is living single in realism. Although bacteria
are microscopic and primeval, there are by all means correlations
between different individuals and colonies. Investigation showed that
Escherichia coli aggregate at the foraging process, and disparate
colonies exchange the food information while keep certain distance
from each other [30]. They are more capable of surviving because
of the enhancement of comprehension on the settings around.

4.2. Detailed Improvement measures

As stated above, improvements are present here, encompassing the
following features which can be separated as two stages, as shown in
Figure 2.

I) Infra-colony Phase [31]
Since every bacterium seizes limited intelligence, and has the

capability to regulate its locomotion by information perceived from
approximate bacteria, aggregate several bacteria into one colony, which
abide following pattern due to the description on the biome community
distribute behavior:

I-I) Before every new motion, bacteria should perceive surround-
ings to validate the existence of more nutrient areas. If there are,
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bacteria are more likely to transfer to the centroid of these areas.

Center(xi,k) =Aver (xj,k| f(xj,k) < f(xi,k)
and dis(xj,k, xi,k) < SenseLimit)

Aver(x1, x2, · · ·xn) =
(∑n

i=1
xi

)
/n

(12)

where k presents motion step, i presents the bacterium index,
dis(xj,k, xi,k) presents the distance between bacteria i and j.

I-II) If a bacterium trends to shift to the center of its
accompanies around, the length of the new trajectory is rand() •
dis(xi,k, center(xi,k)), where rand() uniformly distribute at the range
of (0, 2).

While bacteria perceive the chemo-attractants vary little for a
session, they will migrate by diverse forms in pursuit of more nutrient
nourishment [30]. So after continuous ne steps with absolute differences
of functional values are less than given threshold εe, the bacteria colony
will migrate to a new place. Through the migration, the multiformity
of the bacteria colony can be preserved, and the ability of bouncing
out of local minima can be fortified.

II) Inter-colony Phase
Divide the whole bacteria colony into several sub-colonies, and

each one cast about for food independently. If two sub-colonies
encounter each other with mutual distance less than given threshold L
(L >> SenseLimit), the sub-colony with poor performance should be
punished to migrate. In this way it can be assured that only one sub-
colony exists at the round with diameter L, which prevents the whole
colony from congregating at one point, and maintains its diversity of
augmenting the global search ability of origin algorithm.

5. THE IBCO FOR TRAINING OF FNNS

MSE (mean squared error) is selected as the search objective of our
approach, and it is detailed as follow:

MSE =
N∑

i=1

(true− output)2 (13)

Here true presents the authentic values which are already known to
users, output is the output values of the BP after BCO training, and
N presents the number of samples. Our goal is to minimize the MSE
through BCO.
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Figure 2. Two stages of the flow chart of IBCO.
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Figure 3. The structure of IBCO for optimization of FNN weights.

6. EXPERIMENTS AND DISCUSSIONS

6.1. XOR Problem

In order to examine the feasibility and validity of IBCO technique,
XOR problem was firstly taken as a test. The FNN was set to 2-2-1.
The former two layers used the sigmoid transfer function logsig and the
output layer used the linear transfer function purelin. Error function
was set to MSE. The initial weights were all set to real values randomly
picked out from the range [−1, +1].

Some parameters in BCO was set to several different combinations,
detailed in Table 1, where NB denotes the number of bacteria; SC
denotes the size of a colony; MIS denotes the maximum iterative steps;
EGP denotes the error goal precision.

The experiment had been performed for 100 runs for each group,
whose results were presented in Table 2, where the data of Simple BP
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Table 1. The combination of some parameters in IBCO.

Group NB SC MIS EGP

1 20 5 2000 1e-6

2 25 5 2000 1e-6

3 30 5 2000 1e-6

Table 2. Comparison of results for XOR between IBCO and other
algorithms.

BP BP BP  TS BCO IBCO 

8000 8000 8000 2000 2000 2000 

1e-3 1e-3 1e-3 1e-6 1e-6 1e-6 

89% 86% 82% 94% 92% 98% Convergence rate

Error precision

Maximum learning steps

Learning algorithm Simple Steepest Super Linear Adaptive

algorithm, Steepest algorithm, Super Linear BP algorithm, and TS
algorithm were extracted from document [23]

6.2. sinc Function Approximation

In interest of examining the generalization capability of our IBCO
technique, a comparison to BP algorithm with momentum was
implemented for sinc function approximation (f(x) = sin(x)/x). In
our experiments, both the BP algorithm and BCO or IBCO based BP
network architecture were set to 1-20-1; the transfer function for the
hidden layer and the output layer was tansig and purelin, respectively;
error function was set to MSE ; the maximum iterative steps were set
to 1000; the error goal precision was set to 10−6; and the initial weights
are all picked out randomly. The approximation comparison is shown
in Figure 4. It is evident that the approximation effect of IBCO is
better than that of other algorithms.

6.3. Multi-Dimensional Function Approximation

Our last experiment is to verity the performance of our proposed
algorithm on the multi-dimension function approximation. Here we
choose the following functions as test

f1(x) =
∑10

i=1
x2

i , xi ∈ [−1, 1] (14)
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Figure 4. Comparison of sinc function approximation. (a) BP with
momentum; mse = 3.268e − 3, (b) BCO strategy; mse = 2.909e − 4,
(c) improved BCO; mse = 9.93846e − 7.

f2(x) =
∑10

i=1

[
(x2

i − xi+1)2 + (1 − xi)2
]
, xi ∈ [−5 5] (15)

All network architecture were set to 10-100-1; the transfer function
for the hidden layer and the output layer was tansig and purelin,
respectively; error function was set to MSE ; the maximum iterative
steps were set to 1000; the error goal precision was set to 10−6; and
the initial weights are all picked out randomly. The training data was
obtained by 500 uniformly distributed samples.

Table 3 shows the comparison of multi dimensional function
approximation by BP with momentum, BCO based BP, and IBCO
based BP.

It is obvious from Table 3 that concerning our proposed algorithm
overmatches other two algorithms on the function f1(x) and f2(x).
Since there were not enough steps, IBCO based BP did not converge
at given precision, however it still performed best at three of all.
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Table 3. Comparison of multi-dimensional function approximation.

BP with momentum BCO based BP IBCO based BP

f1(x) 0.452059 4.22362e-5 1.04658e-6

f2(x) 9.14633 1.10718e-3 3.03194e-4

7. CONCLUSION

It can be deduced from the experiments that our IBCO strategy
is obviously superior in convergence rate and precision, and better
generalization capability compared with other training algorithms.

This article also illustrates the importance of using global search
techniques for optimizing neural networks, and it also demonstrates
that the IBCO should be regarded as a possible solution to the hard
optimization problems.
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