Vol. 7
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-04
New Techniques to Conquer the Image Resolution Enhancement Problem
By
Progress In Electromagnetics Research B, Vol. 7, 13-51, 2008
Abstract
This paper presents some new techniques for high resolution (HR) image processing and compares between them. The paper focuses on two main topics, image interpolation and image superresolution. By image interpolation, we mean extracting an HR image from a single Degraded low resolution (LR) image. Polynomial based image interpolation is reviewed. Some new techniques for adaptive image interpolation and inverse image interpolation are presented. The other topic treated in this paper is image super-resolution. By image super resolution, we mean extracting a single HR image either from multiple observations or multiple frames. The paper focuses on the problem of image super resolution using wavelet fusion and presents several super resolution reconstruction algorithms based on the idea of wavelet fusion.
Citation
Said El-Khamy, Mohiy Hadhoud, Moawad Ibrahim Dessouky, Bassiouny Salam, and Fathi Abd El-Samie, "New Techniques to Conquer the Image Resolution Enhancement Problem," Progress In Electromagnetics Research B, Vol. 7, 13-51, 2008.
doi:10.2528/PIERB08020404
References

1. Unser, M., A. Aldroubi, and M. Eden, "B-spline signal processing: Part I --- Theory," IEEE Trans. Signal Processing, Vol. 41, No. 2, 821-833, Feb. 1993.
doi:10.1109/78.193220

2. Unser, M., A. Aldroubi, and M. Eden, "B-spline signal processing: Part II --- Efficient design and applications," IEEE Trans. Signal Processing, Vol. 41, No. 2, 834-848, Feb. 1993.
doi:10.1109/78.193221

3. Unser, M., "Splines a perfect fit for signal and image processing," IEEE Signal Processing Magazine, November 1999.

4. Hou, H. S. and H. C. Andrews, "Cubic spline for image interpolation and digital filtering," IEEE Trans. Accoustics, Speech and Signal Processing, Vol. 26, No. 9, 508-517, December 1978.

5. Thevenaz, P., T. Blu, and M. Unser, "Interpolation revisited," IEEE Trans. Medical Imaging, Vol. 19, No. 7, 739-758, July 2000.
doi:10.1109/42.875199

6. Blu, T., P. Thevenaz, and M. Unser, "MOMS: Maximal-order interpolation of minimal support," IEEE Trans. Image Processing, Vol. 10, No. 7, 1069-1080, 2001.
doi:10.1109/83.931101

7. Vrcelj, B. and P. P. Vaidyanathan, "Efficient implementation of all digital interpolation," IEEE Trans. Image Processing, Vol. 10, No. 11, 1639-1646, November 2001.
doi:10.1109/83.967392

8. Han, J. K. and H.-M. Kim, "Modified cubic convolution scaler with minimum loss of information," Optical Engineering, Vol. 40, No. 4, 540-546, April 2001.
doi:10.1117/1.1355250

9. Ramponi, G., "Warped distance for space variant linear image interpolation," IEEE Trans. Image Processing, Vol. 8, 629-639, 1999.
doi:10.1109/83.760311

10. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "A simple adaptive interpolation approach based on varying image local activity levels," International Journal of Information Acquisition, Vol. 3, No. 1, March 2006.
doi:10.1142/S0219878906000769

11. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "An adaptive cubic convolution image interpolation approach," International Journal of Machine Graphics & Vision, Vol. 14, No. 3, 235-256, 2005.

12. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A newapproach for adaptive polynomial based image interpolation," International Journal of Information Acquisition, Vol. 3, No. 2, 139-159, 2006.
doi:10.1142/S0219878906000885

13. Leung, W. Y. V. and P. J. Bones, "Statistical interpolation of sampled images," Opt. Eng., Vol. 40, No. 4, 547-553, April 2001.
doi:10.1117/1.1353799

14. Shin, J. H., J. H. Jung, and J. K. Paik, "Regularized iterative image interpolation and its application to spatially scalable coding," IEEE Trans. Consumer Electronics, Vol. 44, No. 3, 1042-1047, August 1998.
doi:10.1109/30.713232

15. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Optimization of image interpolation as an inverse problem using the LMMSE algorithm," Proceedings of the IEEE MELECON, 247-250, May 2004.

16. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "A newapproac h for regularized image interpolation," Journal of The Brazilian Computer Society, Vol. 11, No. 3, April 2006.

17. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Sallam, and F. E. A. El-Samie, "Efficient implementation of image interpolation as an inverse problem," Journal of Digital Signal Processing, Vol. 15, No. 2, 137-152, March 2005.
doi:10.1016/j.dsp.2004.10.003

18. Kim, S. P. and W. Y. Su, "Recursive high resolution reconstruction of blurred multiframe images," IEEE Trans. Image Processing, Vol. 2, No. 4, 534-539, October 1993.
doi:10.1109/83.242363

19. Kim, S. P., N. K. Bose, and H. M. Valenzuela, "Recursive reconstruction of high resolution image from noisy undersampled multiframes," IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 38, No. 6, 1013-1027, June 1990.
doi:10.1109/29.56062

20. Park, S. C., M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: A technical overview," IEEE Signal Processing Magazine, Vol. 20, No. 3, 21-36, May 2003.
doi:10.1109/MSP.2003.1203207

21. Eren, P. E., M. I. Sezan, and M. Tekalp, "Robust, object based high resolution image reconstruction from lowresolution vedio," IEEE Trans. Image Processing, Vol. 6, No. 10, 1446-1451, October 1997.
doi:10.1109/83.624970

22. Elad, M. and A. Feuer, "Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images," IEEE Trans. Image Processing, Vol. 6, No. 12, 1646-1658, December 1997.
doi:10.1109/83.650118

23. Capel, D. and A. Zisserman, "Computer vision applied to superresolution," IEEE Signal Processing Magazine, Vol. 20, No. 3, 75-86, May 2003.
doi:10.1109/MSP.2003.1203211

24. Nguyen, N., P. Milanfar, and G. Golub, "A computationally efficient superresolution image reconstruction algorithm," IEEE Trans. Image Processing, Vol. 10, No. 4, 573-583, April 2001.
doi:10.1109/83.913592

25. Rajan, D., S. Chandhuri, and M. V. Joshi, "Multi-objective superresolution: Concepts and examples," IEEE Signal Processing Magazine, Vol. 20, No. 3, 49-61, May 2003.
doi:10.1109/MSP.2003.1203209

26. Segall, C. A., R. Molina, and A. K. Katsaggelos, "High-resolution images from low-resolution compressed video," IEEE Signal Processing Magazine, Vol. 20, No. 3, 37-48, May 2003.
doi:10.1109/MSP.2003.1203208

27. Elad, M. and A. Feuer, "Super-resolution restoration of an image sequence: Adaptive filtering approach," IEEE Trans. Image Processing, Vol. 8, No. 3, 387-395, March 1999.
doi:10.1109/83.748893

28. Ng, M. K. and N. K. Bose, "Mathematical analysis of superresolution methodology," IEEE Signal Processing Magazine, Vol. 20, No. 3, 62-74, May 2003.
doi:10.1109/MSP.2003.1203210

29. Vega, M., J. Mateos, R. Molina, and A. K. Katsagegelos, "Bayesian parameter estimation in image reconstruction from subsampled blurred observations," Proc. of ICIP 2003, 2003.

30. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "Wavelet fusion: A tool to break the limits on LMMSE image super-resolution," International Journal of Wavelets, Multiresolution and Information Processing IJWMIP, Vol. 4, No. 1, March 2006.

31. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A wavelet based entroptic approach to high-resolution image reconstruction," International Journal of Machine Graphics and Vision.

32. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Regularized super-resolution reconstruction of images using wavelet fusion," Journal of Optical Engineering, Vol. 44, No. 9, September 2005.

33. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Blind reconstruction of high resolution images using wavelet fusion," Journal of Applied Optics, Vol. 44, No. 34, December 2005.

34. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A GCD approach to blind superresolution reconstruction of images," Journal of Modern Optics, Vol. 53, No. 8, May 2006.
doi:10.1080/09500340500445065