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Abstract—This paper presents some new techniques for high
resolution (HR) image processing and compares between them. The
paper focuses on two main topics, image interpolation and image super-
resolution. By image interpolation, we mean extracting an HR image
from a single Degraded low resolution (LR) image. Polynomial based
image interpolation is reviewed. Some new techniques for adaptive
image interpolation and inverse image interpolation are presented. The
other topic treated in this paper is image super-resolution. By image
super resolution, we mean extracting a single HR image either from
multiple observations or multiple frames. The paper focuses on the
problem of image super resolution using wavelet fusion and presents
several super resolution reconstruction algorithms based on the idea of
wavelet fusion.
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1. INTRODUCTION

In most electronic imaging applications, images with high resolution
(HR) are required. HR means that pixel density per unit area in the
image is high, and therefore an HR image can offer more details, which
are of great importance in many applications. For example, HR images
are very helpful in medical applications to facilitate the diagnosis
process. HR images are also required in applications such as military
imaging because images are captured at remote distances. Satellite
space imagery is one of the fields that have a bad need for obtaining
HR images from the available captured LR images. In applications
such as image compression, LR images are transmitted to save the
bandwidth and therefore it is the task of the receiver to obtain HR
images from the received LR images. In the processing of old movies,
it’s also required to obtain HR multi frames from the available LR
multi frames. All these applications have motivated the emergence of
a new field of image processing called HR image processing.

In recent years, digital imaging cameras for both still images and
movies have been widely developed. These cameras are based on
charge-coupled devices (CCDs) and CMOS image sensors. Although
these imaging cameras have so many advantages compared to classical
cameras used previously, they suffer from the problem of limited spatial
resolution and their resolution levels and consumer prices are not
suitable for future applications. Thus, the limited abilities of digital
cameras has been another motivation for the emergence of the HR
image processing branch.

The branch of HR image processing concentrates on two main
topics, image interpolation and image super resolution. Image
interpolation is the process by which a single HR image can be
obtained from a single degraded LR one [1–17], while super-resolution
reconstruction of images aims at obtaining a single HR image either
from several degraded still images or from several degraded multiframes
[18–33]. This paper introduces a group of image interpolation and
image super-resolution algorithms and some comparisons between
them.

2. SINGLE CHANNEL LR IMAGE DEGRADATION
MODEL

In the imaging process, when a scene is imaged by an HR imaging
device, the captured HR image can be named f(n1, n2) where n1, n2 =
0, 1, 2, . . . , N − 1. If the same scene is imaged by an LR imaging
device, the resulting image can be named g(m1,m2) where m1, m2 =
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0, 1, 2, . . . ,M − 1. Here M = N/R, where R is the ratio between the
sampling rates of f(n1, n2) and g(m1,m2). The relationship between
the LR image and the HR image, assuming no blurring, can be
represented by the following mathematical model [9–12]:

g = Df + v (1)

where f , g and v are lexicographically ordered vectors of the unknown
HR image, the measured LR image and additive noise values,
respectively. The f vector is of size N2 × 1 and the vectors g and
v are of size M2 ×1. The matrix D is of size M2 ×N2. The matrix D
represents the filtering and down sampling process, which transforms
the HR image to the LR image. Under separability assumption, the
model of filtering and down sampling processes which transforms the
N × N HR image to the M ×M LR image is shown in Fig. 1. Here
M = N/2.

Horizontal
LPF

↓2 Vertical
LPF

↓2

f(n1,n2)

HR image

g(m1,m2)

LR image

Figure 1. Down sampling process from the N ×N HR image to the
N/2 ×N/2 LR image.

3. IMAGE INTERPOLATION

The process of image interpolation aims at estimating intermediate
pixels between the known pixel values in the available LR image. The
image interpolation process can be considered as an image synthesis
operation. This process is performed on a one dimensional basis; row
by row and then column by column. If we have a discrete sequence
f(xk) of length N as shown in Fig. 2a and this sequence is filtered
and down sampled by 2, we get another sequence g(xn) of length N/2
as shown in Fig. 2b. The interpolation process aims at estimating a
sequence l(xk) of length N as shown in Fig. 2c, which is as close as
possible to the original discrete sequence f(xk).

3.1. Linear Space Invariant Image Interpolation

For equally spaced 1-D sampled data, g(xn), many interpolation
functions can be used. The value of the sample to be estimated,
l(xk+1), can, in general, be written in the form [1–12]:

l(xk+1) =
∞∑

n=−∞
cnβ(xk+1 − xn) (2)
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Figure 2. Signal down sampling and interpolation.
a- Original data sequence.
b- Down sampled version of the original data sequence.
c- Interpolated data sequence.
d- Down sampled version of the interpolated data sequence.

where β(x) is the interpolation basis function.
From the classical Sampling theory, if g(xn) is band limited to

(−π, π), then [1–12]:

l(xk+1) =
∞∑

n=−∞
g(xn)sinc (xk+1 − xn) (3)

This is known as ideal interpolation. From the numerical computations
point of view, the ideal interpolation formula is not practical due
to the slow rate of decay of the interpolation kernel sinc (x). So,
approximations such as nearest-neighbor, bilinear, B-Spline, Key’s
(bicubic) and o-Moms basis functions are used as alternative basis
functions [1–12].

Thus, Eq. (2) can be implemented on a finite neighborhood rather
than carrying out an infinite summation and the coefficients cn need to
be estimated [1–12]. The choice of the basis function β(x) can save the
step of estimating the coefficients cn if it is chosen to be an interpolating
basis function such as the bilinear and bicubic basis functions.



Progress In Electromagnetics Research B, Vol. 7, 2008 17

3.1.1. Nearest-Neighbor Interpolation

Nearest-neighbor interpolation is the simplest interpolation scheme.
The basis function associated with nearest-neighbor interpolation is
given by [1–12]:

β0(x) =




0 x < −1/2
1 −1/2 ≤ x ≤ 1/2
0 1/2 ≤ x

(4)

This scheme of interpolation is merely a pixel repetition process and
the basis function is interpolating.

3.1.2. Bilinear Interpolation

The bilinear interpolation enjoys a large popularity due to its simplicity
of implementation. The basis function used in bilinear interpolation is
interpolating and it’s given by [1–12]:

β1(x) =

{
1 − |x| |x| < 1
0 1 ≤ |x| (5)

As shown in Fig. 2, we define the distance between xk+1 and xn and
between xk+1 and xn+1 as [13–17]:

s = xk+1 − xn, 1 − s = xn+1 − xk+1 (6)

Thus, Eq. (2) can be written as follows [1–12]:

l(xk+1) = (1 − s)g(xn) + sg(xn+1) (7)

3.1.3. B-Spline Interpolation

There is a whole family of interpolation basis functions called B-
Splines. These functions are piecewise polynomials of degree n. The
basis function βn(x) represents the central B-Spline of degree n which
is given by [1–12]:

βn(x) = β0 ∗ β0 ∗ · · · ∗ β0(x)︸ ︷︷ ︸
(n+1) times

(8)

From the family of polynomial splines, cubic spline tend to be the most
popular in so many applications. The closed form approximation of
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the cubic spline basis function is given by [1–12]:

β3(x) =




2
3
− |x|2 +

|x|3
2

0 ≤ |x| < 1

(2 − |x|)3
6

1 ≤ |x| < 2

0 2 ≤ |x|

(9)

The cubic spline interpolation formula is given by:

l(xk+1) = c(xn−1)[(3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3]/6
+c(xn)[(2 + s)3 − 4(1 + s)3 + 6s3]/6
+c(xn+1)[(1 + s)3 − 4s3]/6 + c(xn+2)s3/6 (10)

B-spline basis functions are non-interpolating and thus, the coefficients
in Eq. (2) need to be estimated prior to the interpolation process.
This estimation process can be implemented using a digital filtering
approach [1–12].

3.1.4. Bicubic Interpolation

Another method which is significantly effective in signal interpolation
is the bicubic one. The bicubic interpolation basis function is
interpolating and can be expressed in the following form [8, 11]:

β(x) =

{
(α+ 2)|x|3 − (α+ 3)|x|2 + 1 0 ≤ |x| ≤ 1
α|x|3 − 5α|x|2 + 8α|x| − 4α 1 < |x| ≤ 2

(11)

Thus, the general bicubic interpolation formula is given by [8, 11]:

l(xk+1) = g(xn−1)[αs3 − 2αs2 + αs] + g(xn)[(α+ 2)s3 − (3+α)s2 + 1]
+g(xn+1)[−(α+2)s3+(2α+3)s2−αs]+g(xn+2)[−αs3+αs2]

(12)

where α is an optimization parameter. It may be adaptive from point
to point depending on the signal local activity levels.

3.1.5. O-Moms Interpolation

O-Moms are the family of basis functions that enjoy Maximal Order
and Minimal Support. Any of these basis functions can be expressed
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as the weighted sum of a B-Spline and its derivatives [5, 6]. For cubic
o-Moms image interpolation , the basis function is given by [5, 6]:

o−Moms3(x) =




1
2
|x|3 − |x|2 +

1
14

|x| + 13
21
, 0 ≤ |x| ≤ 1

−1
6
|x|3 + |x|2 +

85
42

|x| + 29
21
, 1 < |x| ≤ 2

0, 2 ≤ |x|

(13)

The o-Moms basis functions are non-interpolating and thus the
coefficients in Eq. (2) need to be estimated. This estimation process
can be implemented using the same digital filtering approach as in
B-Spline image interpolation [5, 6].

3.2. Adaptive Image Interpolation (The Warped Distance
Approach)

The idea of warped distance can be used in any of the techniques
mentioned in Section 2 to improve their performance. This idea is
based on modifying the distance s and using a new distance s′ based
on the homogeneity or inhomogeneity in the neighborhood of each
estimated pixel. The warped distance s′ can be estimated using the
following relation [9]:

s′ = s− τAns(s− 1) (14)

where An refers to the asymmetry of the data in the neighborhood of
x and it is defined as [9]:

An =
|g(xn+1) − g(xn−1)| − |g(xn+2) − g(xn)|

L− 1
(15)

where L = 256 for 8 bit pixels. The scaling factor L is to keep An in
the range of −1 to 1.

The parameter τ controls the intensity of warping to avoid blurring
of edges in the interpolation process.

3.3. Adaptive Image Interpolation Based on Local Activity
Levels

Instead of using the traditional image interpolation techniques
mentioned above, a new approach is suggested in this section. This
approach depends on weighting the values of the pixels incorporated
into the image interpolation process by space variant adaptive weights.
The distance s is kept fixed [10].
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Adaptive Bilinear

l(xk+1) = a0(1 − s)g(xn) + a1sg(xn+1) (16)

where,
a0 = 1 − λAn, a1 = 1 + λAn (17)

Adaptive Bicubic

l(xk+1) = a−1g(xn−1)[αs3 − 2αs2 + αs]
+a0g(xn)[(α+ 2)s3 − (3 + α)s2 + 1]
+a1g(xn+1)[−(α+ 2)s3 + (2α+ 3)s2 − αs]
+a2g(xn+2)[−αs3 + αs2] (18)

Adaptive Cubic Spline

l(xk+1) = a−1c(xn−1)[(3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3]/6
+a0c(xn)[(2 + s)3 − 4(1 + s)3 + 6s3]/6
+a1c(xn+1)[(1 + s)3 − 4s3]/6 + a2c(xn+2)s3/6 (19)

where in (18) and (19),

a−1 = a0 = 1 − λAn, a1 = a2 = 1 + λAn (20)

and λ is a constant which controls the intensity of weighting used for
neighboring pixels. Thus, the weighting coefficients are updated at
each pixel depending on the asymmetry An at this pixel. We note the
following special cases:

i- For homogeneous regions, the value of An tends to zero which
leads to a−1 = a0 = a1 = a2 = 1. This is equivalent to the
traditional image interpolation process.

ii- For positive values of An, which means that there is an edge that
is more homogeneous on the right side, the weights of the pixels
on the right side (a1 and a2) are increased and the weights of the
pixels on the left side (a−1 and a0) are decreased. This is expected
to yield images with better visual quality.

iii- For negative values of An, a−1 and a0 are increased and a1 and a2

are decreased and the same effect is obtained.
The proposed adaptive weighting technique can also be applied with
warped distance image interpolation in all the methods mentioned
above. This is clear in Fig. 3 and Table 1 but the enhancement at each
pixel position is minimal as shown in Fig. 4. Thus, there is a need for
a new adaptive algorithm that is able to give a better performance.
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(a) Original Mandrill image 
(b) LR Mandrill image. 

(c) Bicubic Interpolation (no 
warping).  MSE=826.7 

(d) Bicubic interpolation with 
warping .  MSE=807.4 

(e) Adaptive Image Interpolation (no 
warping)  MSE=791 

(f) Adaptive image interpolation with 
warping.  MSE=786.4 

Figure 3. Simple adaptive interpolation results.
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(a) Squared error for bicubic image 
interpolation 

(b) Squared error for adaptive 
bicubic image interpolation 

Figure 4. Squared error at each pixel for the interpolated Mandrill
image.

Table 1. MSE for interpolation of the LR Mandrill image using the
simple adaptive algorithm.

 Interpolation 
with no  
warping 

Warped 
distance 
Interpolation 

Adaptive 
Weighted 
interpolation 

Adaptive 
weighted 
Interpolation 
with warping 

Bilinear 845.09 830.72 808.26 805.72 

Bicubic 826.7 807.4 791 786.4 

Cubic -spline 855.5 846.23 819.96 816.84 

3.4. Space Varying PBP Image Interpolation

Equations (7) and (10) have a single controlling parameter s while
Eq. (12) has two controlling parameters s and α which can be optimized
to give the best interpolation results. The adaptation can be made
pixel by pixel (PBP) depending on the neighboring pixel values [17].
Suppose we have a discrete sequence f(xk) of length N as illustrated
in Fig. 2a. Applying the process of filtering and down sampling on
this sequence, we get a sequence g(xk) of length N/2 as given in
Fig. 2b. If we apply a polynomial based interpolation process on the
resulting sequence g(xn), we will get a sequence l(xk) of length N
which is required to be as close as possible to f(xk). This requires the
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minimization of the mean squared error (MSE) between the estimated
sequence and the original sequence. The minimization of the MSE can
be performed by the minimization of the squared error between each
estimated sample and its original value.

If the sequence g(xn) is interpolated using bilinear interpolation to
give l(xk), the squared estimation error between the estimated sample
l(xk+1) and the original sample f(xk+1) is given by [11, 12]:

E = [f(xk+1) − l(xk+1)]2 (21)

Substituting for l(xk+1) from Eq. (7), we get:

E = [f(xk+1) − (1 − s)g(xn) − sg(xk+1)]2 (22)

But from Fig. 2, we have the following relations:

g(xn) =
1
2
[f(xk) + f(xk−1)] (23)

g(xn+1) =
1
2
[f(xk+2) + f(xk+1)] (24)

Substituting for g(xn) and g(xn+1) into Eq. (21), we get [12]:

E =
[
f(xk+1) −

(1 − s)
2

[f(xk) + f(xk−1)] −
s

2
f(xk+2) + f(xk+1)]

]2

(25)
All sample values are considered constants and E is a function of s
only.

Differentiating Eq. (25) with respect to s and equating to zero
gives [12]:

sopt =
f(xk+1) − g(xn)
g(xn+1) − g(xn)

(26)

Thus, at sopt, there is a minimum squared error between the estimated
sample l(xk+1) and the original sample f(xk+1) [12]. The same
treatment is possible for all other interpolation methods [12].

It is noted that the sequence g(xn) is available but the sequence
f(xk) is unavailable. Thus, one cannot directly determine sopt for the
above mentioned four cases. To solve this problem, we apply a down
sampling operation on the sequence l(xk) to get a sequence q(xn) of
length N/2 as illustrated in Fig. 2d. The squared estimation error
between q(xn+1) and g(xn+1) is given by:

E∗ = [g(xn+1) − q(xn+1)]2 (27)
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From Fig. 2, we have:

l(xk+2) = g(xn+1) (28)

and
q(xn+1) =

1
2
[l(xk+1) + l(xk+2)] (29)

Substituting from Eqs. (24), (28) and (29) into Eq. (27), we get:

E∗ =
1
4

[
[f(xk+1) − l(xk+1)] +

1
2
[f(xk+2) − f(xk+1)]

]2

(30)

Substituting from Eq. (21) into Eq. (30), we get [12]:

E∗ =
1
4

[√
E +K2

]
(31)

where
K =

1
2
[f(xk+2) − f(xk+1)] (32)

It is clear that K is a constant with respect to s or with respect to s
and α for the bicubic case. For the case of edge interpolation, which
is the case of our greatest interest, the side containing f(xk+1) and
f(xk+2) is homogeneous and the side containing f(xk−1) and f(xk) is
also homogeneous. This means that the values of f(xk+1) and f(xk+2)
are close to each other and the values of f(xk−1) and f(xk) are also
close to each other. Thus, the value of K is small and therefore,
the value of sopt which minimizes E leads to the minimization of E∗

regardless of the sign of K. Since E is minimum at sopt, then E∗ will
be minimum at the same value of sopt. For flat areas, the constant K
is approximately equal to zero and E∗ ∼= E/4.

From Eq. (31), we can deduce the following equation [11, 12]:

E∗
min =

1
4

[√
Emin +K

]2
(33)

To evaluate the value of sopt for the cases of bilinear and cubic Spline
interpolation, we follow an iterative manner as follows [12]:

si+1 = si − η0
dE∗

ds
(si) (34)

where η0 is the convergence parameter and s0 = 1/2.
In this iterative algorithm, it is required to calculate dE∗

ds .
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From Eq. (27), we get:

dE∗

ds
= −2[g(xn+1) − q(xn+1)]

dq(xn+1)
ds

(35)

Substituting from Eq. (29) into Eq. (35), we get:

dE∗

ds
= −

[
g(xn+1) −

1
2
[l(xk+1) + l(xk+2)]

]
dl(xk+1)

ds
(36)

The term dl(xk+1)
ds is calculated for each interpolation formula as follows:

i- Bilinear [12]:

dl(xk+1)
ds

= −g(xn) + g(xn+1) (37)

ii- Cubic spline [12]:

dl(xk+1)
ds

= c(xn−1)[3(3 + s)2 − 12(2 + s)2 + 18(1 + s)2 − 12s2]/6

+c(xn)[3(2 + s)2 − 12(1 + s)2 + 18s2]/6
+c(xn+1)[3(1 + s)2 − 12s2]/6 + c(xn+2)s2/2 (38)

For the case of bicubic interpolation, we have two controlling
parameters s and α. If the sequence g(xn) is interpolated using
the bicubic interpolation formula, then using Eq. (21), the squared
estimation error between l(xk+1) and the original sample f(xk+1) is
given by [11]:

E = [f(xk+1) − l(xk+1)]2

= [f(xk+1) − g(xn−1)[αs3 − 2αs2 + αs]
−g(xn)[(α+ 2)s3 − (3 + α)s2 + 1]
−g(xn+1)[−(α+2)s3+(2α+3)s2−αs]−g(xn+2)[−αs3+αs2]]2

(39)

It is required to find the values of sopt and αopt that minimize the value
of E in Eq. (39).

The error function E∗ is a function of the two parameters s and
α. Thus, the minimization of E∗ can be performed by equating the
gradient of E∗ to zero [11].

∇E∗(s, α) =




∂E∗(s, α)
∂s

∂E∗(s, α)
∂α


 = 0 (40)
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The values of sopt and αopt can be iteratively estimated as follows [11]:[
si+1

αi+1

]
=

[
si

αi

]
− η0∇E∗(si, αi) (41)

where η0 is the convergence parameter and s0 = 1/2 and α0 = −1/2.
If α is fixed at −1/2 and the optimization is carried out with

respect to s only, Eq. (41) is simplified to the form [11]:

si+1 = si − η0
dE∗

ds
(si) (42)

If s is fixed at 1/2 and the optimization is carried out with respect to
α only, Eq. (41) is simplified to the form [11]:

αi+1 = αi − η0
dE∗

dα
(αi) (43)

The values of ∂E∗
∂s and ∂E∗

∂α are calculated from Eq. (27) as follows [11]:

∂E∗

∂s
= −2[g(xn+1) − q(xn+1)]

∂q(xn+1)
∂s

(44)

∂E∗

∂α
= −2[g(xn+1) − q(xn+1)]

∂q(xn+1)
∂α

(45)

Substituting from Eqs. (18) and (28) into Eq. (29), we get [11]:

q(xn+1) =
1
2
g(xn−1)[αs3−2αs2+αs]+

1
2
g(xn)[(α+2)s3−(3+α)s2+1]

+
1
2
g(xn+1)[−(α+ 2)3 + (2α+ 3)s2 − αs+ 1] +

1
2
g(xn+2)[−αs3 + αs2]

(46)

Using Eq. (46), we get [11]:

∂q(xn+1)
∂s

=
1
2
g(xn−1)[3αs3−4αs+α]+

1
2
g(xn)[3(α+2)s3−2(3+α)s]

+
1
2
g(xn+1)[−3(α+ 2)s2 + 2(2α+ 3)s− α] +

1
2
g(xn+2)[−3αs2 + 2αs]

(47)
∂q(xn+1)

∂α
=

1
2
g(xn−1)[s3−2s2+s]+

1
2
g(xn)[s3−s2]

+
1
2
g(xn+1)[−s3 + 2s2 − s] +

1
2
g(xn+2)[−s3 + s2]

(48)
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(a) Original image (b) LR image  
SNR=20 dB. 

Figure 5. Lenna image.

(a) Bilinear interpolation (b) Bilinear with warped 
      distance 

(c) Adaptive Bilinear  

Figure 6. Bilinear interpolation (SNR = 20 dB).

This iterative algorithm is used for the estimation of each pixel in the
interpolation process. The optimization process of the bicubic image
interpolation formula can be performed either with respect to a single
parameter (s or α) or with respect to both parameters.

Several experiments have been carried out to test the suggested
adaptive image interpolation algorithm on the Lenna image given in
Fig. 5. The results given in Figs. 6 to 9 reveal that the suggested
adaptive image interpolation algorithm is better in performance than
the traditional algorithms.

Other experiments on the above mentioned algorithms with
different images have also been carried out and the results are given in
Tables 2 to 4. These results show that the suggested adaptive algorithm
gives better results for different images with different signal to noise
ratios.

3.5. Inverse Image Interpolation

This section focuses on solving the image interpolation problem of
noisy images as an inverse problem, taking into consideration the
mathematical model which relates the available noisy LR image to the
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(a) Cubic Spline  
(b) Cubic Spline  
with warped distance 

(c) Adaptive Cubic 
Spline   

Figure 7. Cubic Spline interpolation (SNR = 20 dB).

(a) Bicubic interpolation (b) Bicubic with warped 
      distance 

(c) Adaptive Bicubic  

Figure 8. Bicubic interpolation (SNR = 20 dB).
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Figure 9. MSE vs. SNR for Lenna image interpolation.
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Table 2. MSE for bilinear interpolation of different images.

Bilinear  Bilinear 
(warped 
distance)  

Adaptive 
Bilinear 

Bilinear  Bilinear 
(warped 
distance)  

Adaptive 
Bilinear 

 
Image 

Noise Free interpolation SNR=20 dB 

Cameraman 253 237 197 274 257 234 
Lenna 336 333 269 347 346 289 

Mandrill 834 800 685 852 820 716 
Building 1201 1170 965 1213 1183 983 
TestPat1 333 345 277 359 370 324 

Table 3. MSE for bicubic interpolation of different images.

Bicubic  Bicubic  
(warped 
distance)  

Adaptive 
Bicubic  

Bicubic  Bicubic  
(warped 
distance)  

Adaptive 
Bicubic  

 
Image 

Noise Free interpolation SNR=20 dB 

Cameraman 243 223 194 267 249 231 
Lenna 327 324 270 341 339 289 

Mandrill 818 772 690 840 798 722 
Building 1207 1164 966 1223 1176 979 
TestPat1 304 319 263 335 348 308 

Table 4. MSE for cubic spline interpolation of different images.

Cubic 
Spline  

Cubic 
Spline 

(warped 
distance)  

Adaptive 
Cubic 
Spline 

Cubic 
Spline  

Cubic 
Spline 

(warped 
distance)  

Adaptive 
Cubic 
Spline 

 
Image 

Noise Free interpolation SNR=20 dB 

Cameraman  251 215 215 281 255 255 
Lenna 329 314 273 330 347 295 

Mandrill 842 814 731 870 840 762 
Building 1267 1240 1074 1281 1258 1090 
TestPat1 298 267 267 334 310 310 

required HR image. Three fast inverse image interpolation approaches
are presented and compared from the MSE and computational
complexity points of view. These approaches are the Linear Minimum
Mean Square Error (LMMSE) approach, the maximum entropy
approach and the regularized approach.
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3.5.1. Linear Minimum Mean Square Error (LMMSE) Image
Interpolation

The LMMSE criterion requires the MSE of estimation to be minimum
over the entire ensemble of all possible estimates of the image. The
optimization problem here is given by [15, 17]:

min
f̂

E[ete] = E[Tr(eet)] (49)

with
e = f − f̂ (50)

where f̂ is the estimate of the HR image f , which is captured assuming
that an HR camera is used. Solving this optimization problem based
on Eq. (1) leads to the following solution [15, 17]:

f̂ = RfDt(DRfDt + Rv)−1g (51)

In this solution, the noise is assumed to be independent on the image
such that:

E[fvt] = E[vtf ] = [0] (52)

The autocorrelation matrices given in Eq. (51) are defined as follows
[15, 17]:

Rf = E[ff t] (53)

and
Rv = E[vvt] (54)

The matrix Rv is a diagonal matrix whose main diagonal elements are
equal to the noise variance of the noisy LR image.

The matrix Rf can be approximated by a block diagonal matrix
in the form [15, 17]:

Rf =




R00 0 · · · 0

0 R11
. . .

...
...

. . . . . . 0
0 · · · 0 RN−1N−1


 (55)

If the samples of each column are assumed uncorrelated except for each
pixel with itself, each matrix Rii can be approximated by a diagonal
matrix for i = 0, 1, . . . , N − 1.

The main diagonal elements of the matrix Rii can be
approximated from the polynomial based interpolated images.
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For an image f ′(n1, n2), the autocorrelation at the spatial location
(n1, n2) can be estimated from the following relation [15, 17]:

Rf (n1, n2) ∼=
1
w2

w∑
k=1

w∑
l=1

f ′(k, l)f ′(n1 + k, n2 + l) (56)

where w is an arbitrary window length for the autocorrelation
estimation.

The image f ′(n1, n2) may be taken as the bilinear, bicubic or cubic
spline interpolated image. Thus, the matrix Rf can be approximated
by a diagonal sparse matrix.

3.5.2. Maximum Entropy Image Interpolation

If the samples of the lexicographically ordered image are normalized
to a maximum of 1, these samples can be considered as probabilities.
Thus, the entropy of the sampled image is defined as follows [17]:

E = −
N2∑
i=1

fi log2(fi) (57)

where E is the entropy and fi is the sampled signal.
This equation can be written in the vector form as follows [17]:

E = −f t log2(f) (58)

For image interpolation, to maximize the entropy subject to the
constraint that ‖g − Df‖2 = ‖v‖2, the following cost function must
be minimized:

Ψ(f) = f t log2(f) − λ
[
‖g − Df‖2 − ‖v‖2

]
(59)

where λ is a Lagrangian multiplier.
Solving for f̂ leads to [17]:

f̂ ∼= (D∗tD + ηI)−1D∗tg (60)

where η = −1/(2λ ln(2)).
The inversion of the term D∗tD + ηI can be performed easily

depending of the special nature of this matrix, which is a sparse matrix.
The effect of the term ηI is to remove the ill posedness nature of the
inverse problem by redistributing the eigen values of the term D∗tD
to avoid singularity.
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3.5.3. Regularized Image Interpolation

Regularization theory was first introduced by Tikhonov and Miller. It
provides a formal basis for the development of regularized solutions of
ill posed problems [34–36]. The stabilizing function technique is one of
the basic methodologies for the development of regularized solutions.
According to this approach, an ill-posed problem can be regarded as the
constrained minimization of a certain function, called the stabilizing
function. The specific constraints imposed by the stabilizing function
technique on the solution depend on the form and the properties of the
stabilizing function used.

According to the regularization approach, the solution of Eq. (1)
is obtained by the minimization of the following cost function [16, 17]:

Ψ(f) = ‖g − Df‖2 + λ‖Cf‖2 (61)

where C is the regularization operator and λ is the regularization
parameter.

This minimization is accomplished by taking the derivative of the
cost function yielding:

∂Ψ(f)
∂f

= 0 = 2Dt(g − Df̂) − 2λCtCf̂ (62)

Solving for f̂ that provides the minimum of the cost function yields
[16, 17]:

f̂ = (DtD + λCtC)−1Dtg (63)

The solution of the regularized image interpolation problem can’t be
solved as a direct inversion process for the whole image due to the large
computational complexity of the inversion process. One of the possible
previously suggested solutions to this problem is to use successive
approximation techniques for the solution.

In this section, we suggest another solution to the regularized
image interpolation problem. This solution is implemented by
the segmentation of the LR image into overlapping segments and
interpolating each segment alone using Eq. (63) [16, 17]. It is clear that,
if a global regularization parameter is used, a single matrix inversion
process for a matrix of small dimensions is required because the term
(DtD + λCtC)−1 is independent on the image to be interpolated.
Thus, the algorithm is efficient from the point of view of computation
time.

The results of inverse image interpolation are given in Fig. 10
and Table 5. These results give the conclusion that inverse image
interpolation is better than traditional image interpolation.
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(a) LR Lenna image   
SNR=25 dB (b) Bilinear 

interpolation 

(c) Bicubic 
interpolation 

(c) 
autocorrelation 
bilinear interpolated image. 
 

(d) LMMSE interpolation with  
autocorrelation  
interpolated image. 
 

(e) Maximum entropy  image 
interpolation η=0.001. 

(f)) Regularized image 
interpolation λ=0.001.  

estimated from
LMMSE interpolation with

estimated from bicubic

Figure 10. Inverse interpolation results.

4. SUPER-RESOLUTION RECONSTRUCTION OF
IMAGES

The super resolution reconstruction problem is an ill-posed inverse
problem having matrices of very large dimensions. This problem
has been previously treated in the literature [18–29]. The first
treatment to the supper resolution reconstruction problem was an
iterative frequency domain treatment since the Fourier transform
has superior properties for translational shifts between observations
[18–20]. The maximum a posteriori (MAP) estimation algorithm
has been implemented in the field of image super resolution [21–
23]. Some other set theoretic approaches have also been presented
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Table 5. MSE Interpolation results for different images with
SNR = 25 dB. Column 3 of LMMSE interpolation uses the bilinear
interpolation in estimating the HR image autocorrelation matrix.
Column 5 of LMMSE interpolation uses the bicubic interpolation in
estimating the HR image autocorrelation matrix.

 
Image 

Bilinear 
Interpolation

LMMSE 
Interpolation

Bicubic 
Interpolation

LMMSE 
Interpolation

Maximum 
Entropy 

Interpolation
η=0.001 

Regularized 
Interpolation

λ=0.001 

Cameraman 256 215 248 224 199 151 

Lenna 341 284 332 290 280 219 

Mandrill 259 215 255 216 218 202 

Building 1156 862 1167 869 840 958 

TestPat1 342 235 313 242 296 6 9 

 

[20–24]. The special nature of this problem forces most image
super resolution reconstruction algorithms to have an iterative nature.
These algorithms aim at reducing the computational cost of the
matrix inversion processes involved in the solution by using successive
approximation methods for the estimation of the HR image.

Most of the previously suggested solutions to this problem
are based on the regularization theory [18–29]. The iterative
implementation of the regularization theory in image super resolution
has been the most popular procedure to solve the problem. Although
these algorithms avoid matrix inversions, they are still time consuming
and can’t be implemented beyond a certain limit of dimensionality.

In this section, we suggest a general framework for image super
resolution based on wavelet fusion. In this framework, we propose four
non-iterative algorithms for image super resolution. These algorithms
are LMMSE super resolution, maximum entropy super resolution,
regularized super resolution and blind super resolution using wavelet
fusion. The suggested algorithms are based on breaking the super
resolution reconstruction problem into four consecutive steps to work
on large dimension images. These steps are a registration step, a multi-
channel restoration step, a wavelet-based image fusion and denoising
step and an image interpolation step. The difference between the
suggested algorithms is in the multi-channel restoration step and the
interpolation step. The wavelet image fusion process is used in our
suggested algorithms as a tool to integrate the information obtained
from all the outputs of the multi-channel restoration step into a single
image. The obtained image is then interpolated to give an HR image.
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4.1. Multi-Channel LR Degradation Model

In super resolution image reconstruction algorithms, several degraded
LR observations are used to estimate a single HR image. The
mathematical model which relates the available LR observations to
the required HR image is given by [18–33]:

gk = DkBkMkfh + vk 1 ≤ k ≤ P (64)

where P is the number of available observations, gk is an (M2 × 1)
vector representing the kth (M ×M) LR image in lexicographic order.
fh is an (N2 × 1) vector representing an (N × N) HR image in
lexicographic order. Mk is the (N2 × N2) registration shift matrix
and Bk is the blur matrix of size (N2 × N2). Dk is the (M2 × N2)
uniform down sampling matrix. vk is the M2 × 1 noise vector.

Equation (64) can be rewritten in the following form:
 g1

...
gP


 =


 D1B1M1

...
DpBpMp


 fh +


 v1

...
vP


 (65)

Simplifying Eq. (65) leads to:

g = Lfh + v (66)

where:

g =


 g1

...
gP


 , L =


 D1B1M1

...
DpBpMp


 , v =


 v1

...
vP


 (67)

Using the regularization theory to solve Eq. (66), we get [76, 78, 83]:

f̂h = [LtL + τCtC]−1Ltg (68)

where C is the regularization operator which is preferred to be the
3-D Laplacian operator to capture the between channel information in
the reconstruction process. The parameter τ is a global regularization
parameter.

There is a problem in the implementation of Eq. (68). The matrix
inversion process can’t be performed directly and no approximations,
such as the Toplitz to circulant approximation, can be used to
diagonalize the matrices involved in the inversion process. This is
because L is not a square matrix. In the following section, we present
a different treatment to this ill-posed problem, which removes these
computational limitations.
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4.2. Suggested Super Resolution Reconstruction Approach

In this section, we suggest a new approach to image super resolution
based on wavelet fusion [30–33]. The implementation of this
approach is composed of four consecutive steps. In the general
solution of the super resolution reconstruction problem, we deal with
three degradation phenomena, a general geometric registration warp,
blurring and additive noise. Based on these phenomena, we can break
the solution into the following consecutive steps.

Step 1: Image alignment, which means estimating the geometrical
registration warp between different images.

Step 2: Multi-channel image restoration of the registered degraded
observations.

Step 3: Wavelet based fusion of the multiple images obtained from step
2 to form a single image.

Step 4: Image interpolation of the resulting image from step 3 to
obtain an HR image.

4.3. Simplified Multi-Channel Degradation Model

The multi channel image restoration step aims at obtaining multiple
undegraded images of the same dimensions as that of the available
LR images. These obtained images are then used in the next step of
image fusion. This step requires that a simplified degradation model
is used. This model doesn’t consider the operator D of filtering and
down sampling. For a multi channel imaging system with P channels
each of size M×M , the simplified degradation model becomes [30–32]:

gk = BkMkfk + vk for k = 1, 2, , . . . , P (69)

where gk,fk and vk are the observed image, the ideal image and the
noise of the kth channel, respectively. Bk is the degradation matrix
of the kth channel. Mk is the relative registration shift operator
of the kth channel. In this paper, we restrict our work to global
translational shifts, which is the case of consideration in most image
super resolution reconstruction algorithms. Translational motion can
be approximated by circular motion except near edge pixels [30–32].
Using this approximation, the matrices Mk can be approximated by
circulant matrices for all values of k.

Equation (69) can be written in the following form:

g = BMf + v (70)
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where

g =




g1
g2
...

gP


 ; f =




f1
f2
...

fP


 ; v =




v1

v2
...

vP


 ; B =




B1 0 · · · 0
0 B2 · · · 0
...

... · · · ...
0 0 · · · BP




and

M =




M1 0 · · · 0
0 M2 · · · 0
...

... · · · ...
0 0 · · · MP


 (71)

If we define:
H = BM (72)

Then, the multi-channel image degradation model can be written in
the form [30–32]:

g = Hf + v (73)

where g,f and v are P×M2 in length. The degradation operator H of
the multi channel-imaging model is of dimensions (P×M2)×(P×M2).
We can assume f1 = f2 = · · · = fP .

According to the model given in Eq. (73), the multi-channel
rstoration process is similar to that of the inverse image interpolation
process but with D replaced by H. Thus, the same techniques used for
inverse image interpolation are applicable for multi-channel restoration
but with different implementation methods [30–34].

4.4. Multi Channel Image Restoration

4.4.1. Multi-Channel LMMSE Restoration

The LMMSE solution to the multi-channel image restoration problem
is, thus, given by [30]:

f̂ = RfHt[HRfHt + Rv]−1g (74)

4.4.2. Multi-Channel Maximum Entropy Restoration

Using the concept of entropy maximization, the solution of the
simplified multi-channel image degradation model is represented as
follows [31]:

f̂ ∼= (HtH + ηI)−1Htg (75)
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4.4.3. Multi-Channel Regularized Restoration

Solving for f̂ using the regularization concept gives [32]:

f̂ = [HtH + Λ−1CtC]−1Htg (76)

where Λ is defined by:

Λ =




λ1[I] 0 · · · 0
0 λ2[I] · · · 0
...

... · · · ...
0 0 · · · λP [I]


 (77)

The identity matrix I is of size M2 × M2.
The suggested super resolution image reconstruction algorithms

are tested on different noisy LR degraded observations with different
signal to noise ratios. Several experiments have been conducted in
this test. In the first experiment, three LR degraded observations
of Lenna image of size 128 × 128 are used to obtain a single HR
image of size 256 × 256. The general degradation model of Eq.
(64) is used to generate the degraded observations. The degradation
in each observation comprises a relative translational shift with the
reference observation, an out of focus blurring and additive noise with
SNR = 40 dB. The original LR image is shown in Fig. 11. The
degraded observations are given in Fig. 12.

Figure 11. Original Lenna image.

The LMMSE interpolated version of the original LR image is given
in Fig. 13. The image obtained from the fusion of the outputs of the
multi-channel LMMSE restoration step is given in Fig. 14a. The HR
image obtained using the LMMSE super resolution algorithm is given
in Fig. 14b. It is clear that the computation time is moderate but the
visual quality and the PSNR value obtained are not satisfactory.
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(a) observation (1) 
5×5 Blur operator 

(b) observation (2) 
7×7 Blur operator 

(c) observation (3) 
9×9 Blur operator 

Figure 12. Available observations SNR = 40 dB.

Figure 13. LMMSE interpolation of the original image.

(a) Fused Image 
PSNR=24.3 dB 

(b) LMMSE interpolation of 
the fused image  
PSNR=24.2 dB 

Figure 14. Results of the LMMSE Super-resolution reconstruction
algorithm. CPU = 55 sec.
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Figure 15. Maximum entropy interpolation of the original image.

(a) Fused Image 
PSNR=26.43  dB 

(b) Obtained HR image 
PSNR=26.47 dB 

    CPU=10 sec on a 1   
       GHz Processor 

Figure 16. Results of the maximum entropy super resolution
reconstruction algorithm.

The maximum entropy interpolated version of the original LR
image is given in Fig. 15. The image obtained from the fusion of the
outputs of multi-channel maximum entropy restoration step is given in
Fig. 16a. The HR image obtained using the maximum entropy super
resolution algorithm is given in Fig. 16b. The parameter η used in the
multi channel restoration step and in the interpolation step is 0.001. It
is clear from the obtained results that the computation time is reduced
significantly and the visual quality and the PSNR value obtained get
better.

The regularized interpolated version of the original LR image is
given in Fig. 17. The image obtained from the fusion of the outputs
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Figure 17. Regularized interpolation of the original image.

(a) Fused Image 
PSNR=27.7  dB 

(b) Obtained HR image 
PSNR=27.7 dB 

    CPU=105 sec  on a 1   
       GHz Processor 

Figure 18. Results of the regularized super-resolution reconstruction
algorithm.

of multi-channel regularized restoration step is given in Fig. 18a. The
HR image obtained using the regularized super resolution algorithm is
given in Fig. 18b. The optimum values of the Lagrangian multipliers
used in the multi-channel regularized restoration step are estimated
using Newton method. The parameter λ used in the interpolation step
is 0.001. It is clear from the obtained results that the PSNR value
obtained using this algorithm is the highest obtained value but at the
cost of much more computation time.

The fusion rule used in all algorithms is the maximum frequency
rule. The wavelet fusion process is performed in one decomposition
level using the Haar basis function. The PSNR values given in part (a)
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Figure 19. Original MRI image.

(a) observation (1) 
5×5 Blur operator 

(b) observation (2) 
7×7 Blur operator 

(c) observation (3) 
9×9 Blur operator 

Figure 20. Available observations SNR = 40 dB.

of Figs. 14, 16 and 18 are calculated using the MSE between the fused
image and the original LR image given in Fig. 11. On the other hand,
the PSNR values given in part (b) of the same figures are calculated
using the MSE between the obtained HR image and the interpolated
version of the original LR image using the same algorithm used to
obtain the HR image.

Other experiments on an MRI image has been carried out to test
the suggested algorithms. The results of these experiments are given
in Figs. 19 to 26. The PSNR values are estimated as in the first
experiment.

The experiments carried out in this section using the suggested
super resolution reconstruction algorithms are very difficult to be
implemented using the traditional iterative solutions due to the
very large dimension matrices required which can’t be saved using
traditional PCs as mentioned previously. It is clear that the suggested
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Figure 21. LMMSE interpolation of the original image.

(a) Fused Image 
PSNR=18.85 dB 

(c) LMMSE interpolation of the 
fused image  
PSNR=18.66 dB 

Figure 22. Results of the LMMSE Super-resolution reconstruction
algorithm. CPU = 55 sec.

algorithms have succeeded in obtaining HR images with good visual
quality as compared to the available observations and high PSNR
values. The computation cost is acceptable when the quality of
the HR image obtained is the most important factor. Regularized
super resolution is the best algorithm from the visual quality point
of view but it has the maximum computation time. The success of
the suggested algorithms with three observations only is an indication
of the superiority of these algorithms to the previously mentioned
algorithms which require a large number of frames to obtain a single
HR image.
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Figure 23. Maximum entropy interpolation of the original image.

(a) Fused Image 
PSNR=28.71 dB 

(b) Obtained HR image 
PSNR=28.74 dB 

CPU=105 sec on a 1   
       GHz Processor 

Figure 24. Results of the maximum entropy super resolution
reconstruction algorithm.

Figure 25. Regularized interpolation of the original image.
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(a) Fused Image 
PSNR=32.44 dB 

(b) Obtained HR image 
PSNR=31.49 dB 

CPU=105 sec on a 1   
       GHz Processor 

Figure 26. Results of the regularized super resolution reconstruction
algorithm.

4.4.4. Blind Super Resolution Reconstruction Approach

Assume that we have K degraded observations of the same scene given
by the following equation [33, 34]:

gk(m, n) = f(m, n)∗bk(m, n) + vk(m, n), k = 1, 2, . . . , K (78)

To incorporate the information in each observation into the restoration
process, we suggest generating a new observation image represented by
the following equation [33, 34]:

gK+1(m, n) =
K∑

k=1

wkgk(m, n) (79)

where wk values are scalars chosen according to the estimation of the
SNR in each image which is made using the noise variance estimations.
Another restriction on the values of wk is the normalization condition
as follows [33, 34]:

K∑
k=1

wk = 1 (80)

Substituting from Eq. (79) into Eq. (78), we get:

gK+1(m, n) =
K∑

k=1

wk[f(m, n)∗bk(m, n) + vk(m, n)] (81)
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Thus:

gK+1(m, n) = f(m, n)∗
[

K∑
k=1

wkbk(m, n)

]
+

K∑
k=1

wkvk(m, n) (82)

This equation can be written in the form [33, 34]:

gK+1(m, n) = f(m, n)∗bK+1(m, n) + vK+1(m, n) (83)

where

bK+1(m, n) =

[
K∑

k=1

wkbk(m, n)

]
(84)

and

vK+1(m, n) =
K∑

k=1

wkvk(m, n) (85)

It can be proved that in z-domain, BK+1(z1, z2) is co-prime with all
Bks if each Bk(z1, z2) is co-prime with all other Bks for k ≤ K [33, 34].

Thus, the 2-D GCD algorithm can be carried out between the z-
transforms of gK+1(m, n) and any of gk(m, n) where k ≤ K to give
good estimates of F (z1, z2) and hence f(m, n).

The relation vK+1(m, n) =
∑K

k=1 wkvk(m, n) leads to an image
with noise variance σ2

K+1 given by:

σ2
K+1 =

K∑
k=1

w2
kσ

2
k. (86)

For equal weight averaging, we have w1 = w2 = · · · = wK = 1/K.
Thus:

σ2
K+1 =

K∑
k=1

σ2
k

K2
(87)

The assumption that all observations are taken in the same noisy
environment leads to [97, 98]:

σ2
K+1 =

σ2
k

K
(88)

The above equation leads to an improvement of the SNR in the
image gK+1(m, n) by a factor of K. This increase in SNR enables
a robust application of the 2-D GCD algorithm between gK+1(m, n)
and any other observation gk(m, n) in the z-domain since this 2-D GCD
algorithm is very sensitive to the presence of noise.
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(a) Original image 
 

(b) Maximum Entropy interpolation 
of the original image 

Figure 27. Original undegraded MRI image.

(a) observation (1)  (b) observa tion (2)  (c) observation (3)  

Figure 28. Available observations 5× 5 blur operator SNR = 60 dB.

The suggested blind super resolution image reconstruction
approach is tested using three degraded observations of the same
MRI image blurred with different co-prime blurring operators. Each
observation is of size (128× 128) pixels and the signal to noise ratio in
each observation is 60 dB. The original image and its maximum entropy
interpolated version are given in Fig. 27. The degraded observations
are given in Fig. 28. A combinational image is generated from the
available degraded observations by equal weight averaging. The GCD
is estimated between the obtained combinational image and each one
of the available observations. The multiple outputs obtained from
this step are fused on a wavelet basis. The image obtained from
the wavelet based fusion step is given in Fig. 29a. The rule used in
image fusion is the maximum frequency rule and the fusion process is
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(b) Fused Image (c) Obtained HR image 
PSNR=30.2 dB 

    CPU=55 sec  on a 1   
       GHz Processor 

Figure 29. Results of the blind super resolution reconstruction
algorithm.

performed in one decomposition level. Applying the maximum entropy
image interpolation algorithm on that image in Fig. 29a gives the HR
image in Fig. 29b. It is clear that the suggested blind super resolution
reconstruction algorithm has succeeded in obtaining an HR image with
a good visual quality and a high PSNR in a small time.

5. CONCLUSIONS

This paper reveals the importance of the branch of image processing
called HR image processing. The two main topics that are of great
importance in HR image processing are studied. Existing as well
as suggested new techniques in HR image processing are compared
from the MSE or PSNR and the computational complexity points
of view. The paper should motivate the work in the field of HR
image processing towards more efficient image interpolation and super
resolution approaches.
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