Vol. 81
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-03
Vector Finite Element Analysis of Multicomponent Induction Response in Anisotropic Formations
By
Progress In Electromagnetics Research, Vol. 81, 21-39, 2008
Abstract
Multicomponent induction logging responses are simulated by using hierarchical mixed order vector finite element method (FEM). In order to modeling three orthogonal magnetic dipoles, we adopt the method that the total field is separated into incident field and secondary field, and only the secondary field is computed by FEM. In addition, two techniques are applied to improve the modeling accuracy and computational efficiency: 1) Hierarchical mixed order vector basis functions are applied to FEM. Different order basis functions are used in different elements in accordance with the changing speed of the field. The mixed order scheme reduces greatly the number of unknowns without reducing accuracy, and can attain much higher computational efficiency. 2) The systemof the FEM equations is solved by Distributed-SuperLU, and the results of multiple measure points can be got simultaneously. The FEM result is validated against volume integral equation method and the approach of planar layered media Green's functions, and the comparisons show very good agreement. Finally, the multicomponent induction response in anisotropic formations involving eccentric tools and dipping beds is included to demonstrate the flexibility of the method.
Citation
Xiang Sun, and Zai-Ping Nie, "Vector Finite Element Analysis of Multicomponent Induction Response in Anisotropic Formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.
doi:10.2528/PIER07121502
References

1. Kriegshauser, B., O. Fanini, S. Forgang, G. Itskovich, M. Rabinovich, L. Tabarovsky, L. Yu, M. Epov, et al. "A new multicomponent induction loggingtool to resolve anisotropic formations," SPWLA 40th Ann. Log. Symp., 2000.

2. Davydycheva, S., V. Druskinz, and T. Habashyz, "An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media," Geophysics, Vol. 68, No. 5, 1525-1535, 2003.
doi:10.1190/1.1620626

3. Wang, T. and S. Fang, "3-D electromagnetic anisotropy modeling using finite differences," Geophysics, Vol. 66, No. 6, 1386-1398, 2001.
doi:10.1190/1.1486779

4. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2002.

5. Zhang, Z. Q. and Q. H. Liu, "Applications of the BCGS-FFT method to 3-D induction well logging problem," IEEE Trans. Geoscience and Remote Sensing, Vol. 41, No. 5, 998-1004, 2003.
doi:10.1109/TGRS.2003.811547

6. Ilic, M. M. and B. M. Notaros, "Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 3, 1026-1033, 2003.

7. Shen, J. S., "Modeling of the 3-D electromagnetic responses to the anisotropic medium by the edge finite element method," Well Logging Technology of China, Vol. 28, No. 2, 11-15, 2004.

8. Everett, M. E., E. A. Badea, L. C. Shen, G. A. Merchant, and C. J. Weiss, "3-D finite element analysis of induction logging in a dipping formation," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 10, 2244-2252, 2003.
doi:10.1109/36.957287

9. Liu, J. W. H., "The role of elimination trees in sparse factorization," SIAM J. Matrix Anal. Appl., Vol. 11, 134-172, 1990.
doi:10.1137/0611010

10. Demmel, J. W., S. C. Eisenstat, J. R. Gilbert, and X. Y. Li, "A supernodal approach to sparse partial pivoting," SIAM J. Matrix Anal. Appl., Vol. 20, 720-755, 1999.
doi:10.1137/S0895479895291765

11. Demmel, J. W., J. R. Gilbert, and X. Y. Li, SuperLU Users' Guide, 1999., 1999.

12. Zhdanov, M. S.W. D. Kennedy, A. B. Cheryauka, and E. Peksen, "Principles of tensor induction well logging in a deviated well in an anisotropic medium," SPWLA 42nd Annual Logging Symposium, 17-20, 2001.

13. Sun, X. Y., Z. P. Nie, A. Y. Li, and L. Xi, "Numerical modeling of multicomponent induction response in planar layered anisotropic formation," Chinese Geophysics.

14. Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. Newman, "Three-dimensional induction logging problems, Part 1: An integral equation solution and model comparisons," Geophysics, Vol. 67, No. 2, 413-426, 2002.
doi:10.1190/1.1468601

15. Zhdanov, M. S., D. Kennedy, and E. Peksen, "Foundation of the tensor induction well logging," Perophysics, Vol. 42, No. 6, 588-610, 2001.

16. Riddolls, R. J., "Near-field response in lossy media with exponential conductivity inhomogeneity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1551-1558, 2006.
doi:10.1163/156939306779274354

17. Golestani-Rad, L. and J. Rashed-Mohassel, "Rigorous analysis of EM-wave penetration into a typical roomusing FDTD method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

18. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithmcom bined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

19. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

20. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MOM-FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

21. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

22. Liu, Q. H., "Electromagnetic field generated by an off-axis source in a cylindrically layered medium with an arbitrary number of horizontal discontinuities," Geophysics, Vol. 58, No. 50, 616-625, 1993.
doi:10.1190/1.1443445

23. Pingenot, J., "Full wave analysis of signal attenuation in a lossy rough surface cave using a high order time domain vector finite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408

24. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396

25. Hatamzadeh-Varmazyar, S., "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

26. Jiang, G. X., H. B. Zhu, and W. Cao, "Implicit solution to modified form of time domain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 697-707, 2007.
doi:10.1163/156939307780667328

27. Wu, C. G. and G. X. Jiang, "Stabilization procedure for the timedomain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1507-1512, 2007.

28. Franceschini, G., "A comparative assessment among iterative linear solvers dealing with electromagnetic integral equations in 3D inhomogeneous anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 899-914, 2007.
doi:10.1163/156939307780749048