Vol. 81
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-03
From Cpu to GPU: GPU-Based Electromagnetic Computing (GPUECO)
By
Progress In Electromagnetics Research, Vol. 81, 1-19, 2008
Abstract
In this paper, we provide a new architecture by using the programmable graphics processing unit (GPU) to move all electromagnetic computing code to graphical hardware, which significantly accelerates Graphical electromagnetic computing (GRECO) method. We name this method GPUECO. The GPUECO method not only employs the hidden surface removal technique of graphics hardware to identify the surfaces and wedges visible from the radar direction, but also utilizes the formidable of computing power in programmable GPUs to predict the scattered fields of visible surfaces and wedges using the Physical Optical (PO) and Equivalent Edge Current (EEC). The computational efficiency of the scattered field in fragment processors is further enhanced using the Z-Cull and parallel reduction techniques, which avoid the inconsistent branching and the addition of the scattered fields in CPU, respectively. Numerical results show excellent agreement with the exact solution and measured data and, the GPUECO method yields approximately 30times faster results.
Citation
Yu Bo Tao, Hai Lin, and Hu Bao, "From Cpu to GPU: GPU-Based Electromagnetic Computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302
References

1. Youssef, N. N., "Radar cross section of complex targets," Proc. IEEE, Vol. 77, No. 5, 772-734, 1989.

2. Bouche, D. P., F. A. Molinet, and R. A. J. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc IEEE, Vol. 81, No. 12, 1658-1684, 1993.
doi:10.1109/5.248956

3. Rius, J. M., M. Ferrando, and L. Jofre, "High frequency RCS of complex radar targets in real time," IEEE Transaction on Antenna and Propagation, Vol. 41, No. 9, 1308-1318, 1993.
doi:10.1109/8.247759

4. Chen, X. J. and X. W. Shi, "Backscattering of electrically large perfect conducting targets modeled by NURBS surfaces in halfspace," Progress In Electromagnetics Research, Vol. 77, 215-224, 2007.
doi:10.2528/PIER07081602

5. Zhong, X. J., T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, "Terahertz-wave scattering by perfectly electrical conducting objects," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2331-2340, 2007.
doi:10.1163/156939307783134443

6. Li, X. F., Y. J. Xie, and R. Yang, "High-Frequency method analysis on scattering from homogenous dielectric objects with electrically large size in half space," Progress In Electromagnetics Research B, Vol. 1, 177-188, 2008.
doi:10.2528/PIERB07103001

7. Perez, J. and F. Catedra, "Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces," IEEE Transaction on Antenna and Propagation, Vol. 42, No. 10, 1404-1411, 1994.
doi:10.1109/8.320747

8. Chen, M., Y. Zhang, and C. H. Liang, "Calculation of the field distribution near electrically large NURBS surfaces with physical optics method," Journal of Electromagnetic Wave Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

9. Zhang, P. F. and S. X. Gong, "Improvement on the forwardbackward iterative physical optics algorithm applied to compute the RCS of large open-ended cavities," Journal of Electromagnetic Wave Applications, Vol. 21, No. 4, 457-469, 2007.
doi:10.1163/156939307779367297

10. Zhao, Y., X. W. Shi, and L. Xu, "Modeling with nurbs surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

11. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J. F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

12. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transaction on Antenna and Propagation, Vol. 37, No. 2, 194-204, 1989.
doi:10.1109/8.18706

13. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-128, 2006.
doi:10.1163/156939306775777341

14. Bang, J. K., B. C. Kim, S. H. Suk, K. S. Jin, and H. T. Kim, "Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 829-840, 2007.
doi:10.1163/156939307780749129

15. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "RCS computation of airplane using parabolic equation," Progress In Electromagnetics Research, Vol. 57, 265-276, 2006.
doi:10.2528/PIER05080101

16. Wang, N., Y. Zhang, and C. H. Liang, "Creeping ray-tracing algorithm of UTD method based on NURBS models with the source on surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602

17. Wang, N. and C. H. Liang, "Study on the occlusions between rays and NURBS surfaces in optical methods," Progress In Electromagnetics Research, Vol. 71, 243-249, 2007.
doi:10.2528/PIER07030401

18. Liang, C. H., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902

19. Yang, Z. L., L. Jin, J. L. Ni, and D. G. Fang, "Bistatic RCS calculation of complex target by GRECO," ACTA Electronica Sinica, Vol. 32, No. 6, 1033-1035, 2004.

20. Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, "A survey of general-purpose computation on graphics hardware," Eurographics. Computer Graphics Forum, Vol. 26, No. 1, 80-113, 2007.
doi:10.1111/j.1467-8659.2007.01012.x

21. Buck, I., "GPGPU: General-purpose computation on graphics hardware-GPU computation strategies & tricks," ACM SIGGRAPH Course Notes, No. 8, 2004.

22. ``Intel processors product list, '' http://www.intel.com/products/ processor, "22. Intel processors product list," http://www.intel.com/products/ processor, 2006.

23. Mark, W. R., R. S. Glanville, K. Akeley, and M. J. Kilgard, "Cg: A system for programming graphics hardware in a C-like language," ACM Transactions on Graphics, Vol. 22, No. 3, 896-907, 2003.
doi:10.1145/882262.882362

24. Harris, M., "Mapping computational concepts to GPUs," GPU Gems 2, 493-508, 2005.

25. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1985.

26. Mitzner, K. M., "Incremental length diffraction coefficients," AircraftDivisionNorthropCorp.Tech.Rep.AFAL-TR-73-296, No. 4, 73-296, 1974.

27. Michaeli, A., "Equivalent edge currents for arbitrary observation," IEEE Transaction on Antenna and Propagation, Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

28. Michaeli, A., "Elimination of infinities in equivalent edge currents- Part I: Fringe current components," IEEE Transaction on Antenna and Propagation, Vol. 34, No. 7, 912-918, 1986.
doi:10.1109/TAP.1986.1143913

29. Knott, E. F., "The relationship between Mitzner's ILDC and Michaeli's equivalent currents," IEEE Transaction on Antenna and Propagation, Vol. 33, No. 1, 112-114, 1985.
doi:10.1109/TAP.1985.1143482

30. Rius, J. M., D. Burgos, and A. Cardama, "Discretization errors in the graphical computation of Physical Optics surface integral," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 13, No. 3, 255-263, 1998.