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Abstract—In this paper, we provide a new architecture by using the
programmable graphics processing unit (GPU) to move all electro-
magnetic computing code to graphical hardware, which significantly
accelerates Graphical electromagnetic computing (GRECO) method.
We name this method GPUECO. The GPUECO method not only
employs the hidden surface removal technique of graphics hardware
to identify the surfaces and wedges visible from the radar direction,
but also utilizes the formidable of computing power in programmable
GPUs to predict the scattered fields of visible surfaces and wedges us-
ing the Physical Optical (PO) and Equivalent Edge Current (EEC).
The computational efficiency of the scattered field in fragment pro-
cessors is further enhanced using the Z-Cull and parallel reduction
techniques, which avoid the inconsistent branching and the addition
of the scattered fields in CPU, respectively. Numerical results show
excellent agreement with the exact solution and measured data and,
the GPUECO method yields approximately 30 times faster results.

1. INTRODUCTION

The prediction of the high-frequency radar cross section (RCS) of
electrically large and complex targets is usually very complex. One
popular and effective method is the high-frequency approximations [1–
6], such as Geometrical Optics (GO), Physical Optics (PO) [7–11],
Shooting and bouncing rays (SBR) [12–14], and other diffraction or
scattering methods [15, 16]. The visibility computing that detects the
surfaces or wedges of the target visible from the radar direction is a
complex and time-consuming part of the high-frequency techniques
[17, 18], while Graphical electromagnetic computing (GRECO) [3]
method solves this problem effectively using the Z-Buffer of the
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workstation graphics hardware, which is one of the most popular
hidden surface removal algorithms in computer graphics. The Physical
Optical (PO) and Physical Theory of Diffraction (PTD) are used to
compute the first-order far field scattered from visible surfaces and
wedges in the GRECO method, respectively. Besides the monostatic
RCS, the GRECO method is also extended to predict the bistatic
RCS of arbitrary shapes by the Physical Optical (PO) and Incremental
Length Diffraction Coefficients (ILDC) [19].

Recent rapid development of graphics hardware has made sig-
nificant impact on graphical processing, especially the programmable
graphics processing unit (GPU) makes the graphics hardware more
flexible and effective for rendering and other computationally demand-
ing tasks [20]. As the graphics hardware based visibility computing has
accelerated the RCS prediction in the GRECO method, it would be
straightforward to move the electromagnetic computing code to graph-
ics hardware through the programmable GPU, to further reduce the
computation time of the RCS prediction.

In this paper, a new architecture of the GRECO method based on
the programmable GPU is proposed for both monostatic and bistatic
RCS prediction of electrically large and complex targets, which we
called GPUECO. The identifications of visible surfaces and wedges
are processed separately, and then the Physical Optical (PO) and
Equivalent Edge Current (EEC) are applied to calculate the scattered
fields of visible surfaces and wedges of the target respectively in several
passes. The proposed approach greatly improves the accuracy and
efficiency of the RCS prediction. This paper is organized as follows:
Section 2 reviews the programmable pipeline of modern commodity
graphics hardware, Section 3 describes the GPUECO method in detail,
and numerical results and discussions are presented in Section 4.

2. PROGRAMMABLE PIPELINE OF GRAPHICS
HARDWARE

With the rapid development of graphics hardware, especially the
programmability of GPU, commodity graphics hardware, for instance
NVIDIA GeForce 6 and 7 series, provides large memory bandwidth
and high computing power in general-purpose processing, which is
known as GPGPU (General-Purpose processing on the GPU) [20]. For
example, the NVIDIA GeForce 6800 Ultra can obtain 35.2 GB/sec of
memory bandwidth and over 53 GFLOPS of computing power, while
the theoretical peak for the SSE units of a dual-core 3.7 GHz Intel
Pentium Extreme Edition 965 is 8.5 GB/sec and 25.6 GFLOPS [20–
22].
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The current rendering pipeline is shown in Fig. 1. The underlying
architecture of the programmable graphics hardware is called Single
Instruction Multiple Data (SIMD), i.e., many parallel processors
execute the same instruction on different data at a time. The vertex
processor and fragment processor are programmable using the high-
level shading languages like Cg and the OpenGL shading language.
For example, Cg provides instructions including numeral operation,
texture sampling, flow control, etc., and supports multiple built-in data
types, such as boolean, integer, single floating point, matrix, vector of
other types, structure, and array [23].
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Figure 1. The programmable pipeline of graphics hardware.

The rendering pipeline starts with sending the geometric objects,
for instance triangles or quadrangles, to graphics hardware from CPU.
The geometric objects are described by 3D coordinates (vertices),
connectivity information, and other numerical information (i.e.,
texture coordinates). In the first stage of the pipeline, multiple vertex
processors execute the same instruction of the vertex program in
parallel on different vertices. In general, the positions of vertices
are transformed from object coordinates to camera coordinates. In
the camera coordinate system, lighting is performed according to the
transformed position and lighting information.

In the next stage of the pipeline, the transformed vertices
are grouped into primitives, which are points, lines, or triangles,
according to the connectivity information. The positions of vertices
are then projected from camera coordinates to screen coordinates.
Per-primitive operations are used to remove primitives that aren’t
visible at all and to clip primitives that intersect the view frustum.
After performing edge and plane equation setup on the vertices, the
primitives are rasterized into discrete points (fragments), each of
which has related screen position, depth, color, and other numerical
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information (texture coordinates) by interpolating the values of
vertices.

Similar to the vertex processors, multiple fragment processors
operate in concert applying the fragment program to each fragment
independently, and produce the final result, which is usually the color
information. The texture memory (in the following we use the texture
for short) could be accessed in fragment processors through texture
coordinates to obtain additional information for generating the final
result.

In the final non-programmable stage, the color information of the
fragment is recorded to the relevant pixel on the frame buffer. If
multiple fragments are mapped to the same pixel position, the depth-
buffer test (Z-Buffer hidden surface removal algorithm) decides which
one is written into the frame buffer, by comparing the depth values
of fragments. The data format of the frame buffer is not restricted
to 8 bits of each RGBA color component, but it could be also a
single floating point. In addition, the multiple-render-targets technique
allows graphics hardware to render at most 4 render targets (multiple
frame buffers) in one pass, totally 16 floating-point numbers, and the
render-to-texture technique allows the frame buffer as the input texture
in the next rendering pass if necessary.

3. GPUECO

The GRECO method makes use of parametric surfaces to represent the
target geometry. Parametric surfaces must be tessellated into planar
geometric objects before rendering, which is an error-prone conversion,
while triangles are friendly to modern graphics hardware and could
be processed more effectively as described in Section 2. Additionally,
targets in terms of facets and wedges are universal in general processing
and also common in the RCS prediction. Therefore, this paper uses a
collection of facets and wedges to model the target geometry.

Since the scattered field of each rendered pixel is calculated inde-
pendently, we employ the data-parallel method of the GPU computa-
tional mapping concepts [24] to transfer the electromagnetic comput-
ing to graphics hardware. The procedure of the GPUECO method and
all fragment shaders are illustrated in Fig. 2. The graphical processing
(visibility computing) and electromagnetic computing in the GPUECO
method are both processed in programmable GPUs through several
passes. On each pass, fragment processors are associated with one
fragment shader (the computational kernel), which is a set of software
instructions and is analogous to the CPU inner loop. By using the
multiple-render-targets and render-to-texture techniques, the outputs
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of the fragment shader are floating-point textures, which are equal to
CPU arrays. All these textures have the same size to ensure the one-
to-one mapping in electromagnetic computing. The scattered fields
of surfaces and wedges of the target are processed separately in the
left and right procedures and finally, the total scattered field is given
by summing the contributions of each element through the Reduce
Shader.
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Figure 2. The procedure of GPUECO for the RCS prediction.

3.1. Scattered Filed of Surfaces of the Target in GPUECO

As shown in the left of Fig. 2, the procedure for predicting the scattered
fields of surfaces of the target is composed of three shaders: the Facet
Shader, the Z-Cull Shader, and the PO Shader. The data diagram
of this procedure is illustrated in Fig. 3. The position and normal of
visible facets are rendered into two textures in the Facet Shader, and
then the Z-Cull Shader processes the background pixels and marks
the depth values of these pixels. Hence, the PO Shader only calculate
the scattered fields of rendered pixels and record the scattered fields
into the corresponding pixels of two field textures. Note that all these
floating-point textures have the same size. The details of these three
shaders are discussed in the following subsections.
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Figure 3. Data diagram for the scatted field prediction of surfaces of
the target.

3.1.1. The Facet Shader

The Facet Shader takes as input the vertex coordinates and two
associated texture coordinates, which are the position and normal
of the vertex. In the stage of vertex processors, the position of
the vertex is transformed into the coordinate system of the radar
direction, lighting is canceled out, and the texture coordinates remain
unchanged. The texture coordinates of fragments inside the facet are
interpolated through these of vertices during the rasterization. In
fragment processors, the Facet Shader outputs the texture coordinates
as the color information to two textures separately. Finally, whether
the color information should be written into the corresponding pixel of
the texture depends on the result of depth-buffer test. After the Facet
Shader, the pixels of these two textures are the position and normal of
each point of the target visible from the radar direction, respectively.

The GRECO method sets up the light directions subtly to obtain
the unit normal and needs rendering the target twice, i.e., positive
and negative lighting axis directions, to obtain the positive and
negative value of the normal separately, while the GPUECO method
cancels out the lighting and renders the target only once through
the programmable GPU, which is much simple and effective. The
numerical precision of the position and normal in the GPUECO
method is more precise compared to the GRECO method, where the
normal components are discretized to [0, 255] in 8 bits.

Figure 4 shows two images of an aircraft rendered through the
Facet Shader. The color components (R, G, B) are equal to the
position (x, y, z) of visible surfaces in the Fig. 4(a), and the normal
components correspond to the color components in the Fig. 4(b). The
background color is changed from black to white to illustrate the part
that each component of the color is less than zero.

3.1.2. The Z-Cull Shader

With the knowledge of the position and normal of each rendered
pixel of the target, it is ready to calculate the scattered field using
the PO integral. If we directly apply the PO shader in the data-
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Figure 4. Rendered images of an aircraft, (a) position image, the
color components are the 3D position of visible surface in the radar
direction, (b) normal image, the normal components correspond to the
color components.

parallel method, when the pixels of different types, i.e., the rendered
pixels and background pixels, are simultaneously processed in fragment
processors in the SIMD fashion, divergence in the branching will slow
the performance. The reason is that both sides of the branching must
be evaluated in the divergent branching, hence, the fragment processors
that process the background pixels execute the same instruction as the
other processors, but output zero at last.

This divergent branching can be avoided through the Z-Cull
technique, which is one effective technique of moving branching up the
pipeline [20]. Z-Cull is implemented in modern commodity graphics
hardware and operates during the rasterization stage. When the
pixel positions covered by each primitive have been determined, Z-
Cull can quickly discard the fragments that fail the depth-buffer test.
Only fragments that pass the depth-buffer test are processed in the
subsequent stages of the pipeline and the outputs are recorded in the
frame buffer. Hence, if the depth buffer could be marked in the way
that only rendered pixels can pass the depth-buffer test, Z-Cull can
make fragment processors only dealing with rendered pixels in the
coherent branching and subsequently, greatly improves the utilization
of fragment processors and the computational efficiency of the PO
integral.

The Z-Cull Shader is designed to mark the depth values in the
position of background pixels with the minimum depth value. The
depth buffer is cleared with the maximum depth value (usually 1) as
usual, and then the Z-Cull Shader is invoked by rendering a rectangle
with the minimum depth value (usually 0). The rectangle covers the
exact size of the frame buffer and its texture coordinates corresponds to
the range of the normal texture. This ensures the one-to-one mapping
between the pixel in the frame buffer and the pixel in the normal
texture. In the Z-Cull Shader, the normal of the fragment can be
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accessed in the normal texture through texture coordinates. The
fragments with the zero normal (the position of background pixels)
can pass the fragment processor and the corresponding depth value
is replaced with the minimum depth value, while the pixels with the
non-zero normal (the position of rendered pixels) are discarded and
left the PO Shader to process, and the relevant depth values remain
the maximum value.

3.1.3. The PO Shader

With the marked depth buffer, the scattered field of each rendered
pixel of the target can be calculated effectively in the PO Shader. The
PO Shader is invoked using the same rectangle and texture coordinates
of the Z-Cull Shader, except that the depth value of the rectangle is
the middle depth value, say, 0.5. The fragments corresponding to the
background pixels are skipped by Z-Cull before the fragment processor,
because the corresponding depth values in the depth buffer are smaller
than these of current fragments. As a result, only the fragments in the
position of rendered pixels continue to be processed in the PO Shader.

In the PO Shader, the position and normal of each rendered pixel
are obtained from the position texture and normal texture through the
well-designed texture coordinates. Besides the position and normal,
the PO Shader also receives the parameters of the pixel size, the
frequency, the direction of incidence and observation, and the direction
of incident and observational polarization. Each processed fragment
in the PO Shader corresponds to a small parallelogram, which we
called patch for simplicity. The center and normal of the patch are the
position and facet normal of the pixel, respectively. The four vertices
of the patch can be calculated using the position, the normal, and the
incident direction.

As the monostatic RCS is a special case of the bistatic RCS that
the observational direction is equal to the incident direction, we employ
the formula of the bistatic PO to calculate the scattered fields of the
surfaces. The contribution to far field of the planar PEC patch can be
approximated by the PO integral is expressed as [25]:

√
σ =

−n̂ · (êr × ĥi)√
πT 2

e−jk�r0·�w
4∑

n=1

(p̂ · �an)e−jk�rn·�w sin(1
2k�an · �w)

1
2k�an · �w

(1)

where σ is the bistatic RCS of the patch, n̂ is the unit normal of the
patch, êr is the observational direction of polarization, �r0 is the source
position, �w = î−ŝ, î is unit direction of incidence, ŝ is the unit direction
of observation, �an is the nth edge vector of the patch, �rn is the center
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position of nth edge of the patch, T is the projected length of �w on
the patch, p̂ = n̂ × �w/n̂ × �w.

Equation (1) is used to calculate the scattered field of each
rendered pixel in the PO Shader for both the vertical and horizontal
polarization, and the final results are 12 floating-point numbers. In
order to reduce the number of outputs, the complex results of vv, vh,
hv, and hh polarization are produced, and the 8 floating-point numbers
can be stored in two field textures as shown in Fig. 3.

3.2. Scattered Field of Wedges of the Target in GPUECO

Besides the scattered fields of visible facets, the contribution of visible
wedges must be considered for a realistic RCS prediction. The wedge
detection method in the GRECO method has the limitation that the
wedge across the neighbor pixels with the discontinuous depth values
or on the contour could not be identified effectively using just the
position and normal of rendered pixels. Hence, in the GPUECO
method, a separate procedure, which includes the Wedge Shader, the
Z-Cull Shader, and the EEC Shader as shown in the right of Fig. 2, is
proposed for the visible wedge detection and the scatted field prediction
of visible wedges.

The data diagram of this procedure is illustrated in Fig. 5. In the
preprocessing stage, the actual wedges of the target are all identified
and the associated information is stored into three static textures,
here static means these textures will not be changed during the RCS
prediction. In the runtime, the position and index of actual wedges
are rendered into the wedge texture in the Wedge Shader, and then
the Z-Cull Shader in the similar way processes the background pixels
and marks the depth values of these pixels. Finally, the EEC shader
calculated the scattered fields of rendered pixels using these three static
textures and the wedge texture, and the scattered field is recorded in
the corresponding pixels of two field textures. The wedge texture is
the same size as the normal texture, and the two field textures are
actually the same field textures in Fig. 3.
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Figure 5. Data diagram for the scatted field prediction of wedges of
the target.
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3.2.1. The Preprocessing Stage

In the preprocessing stage, it is necessary to identify all actual wedges
of the target for the following visibility computing. The facets are
parsed to construct the adjacent facet information of all wedges, and
then the dihedral angles of the wedges can be easily deduced from the
adjacent facet information. For the boundary wedges, the dihedral
angle of the wedge is assumed to be zero. The wedge due to the facet
noise can be removed by checking whether the dihedral angle of the
wedge is larger than the user-defined angle, and the remaining wedges
are actual wedges in the target.

The computational parameters, which are needed in the EEC
Shader, are packed into three static floating-point textures. As shown
in Fig. 6, the content of one texture is the unit direction along the
wedge and the dihedral angle of wedges, and the others are the unit
normal of adjacent faces of actual wedges. These textures contain all
computational parameters for the EEC integral for all actual wedges.
Note that the size of these static textures is different with the wedge
texture.

x y z n x y z nx y z nx y z nx y z n ...

x y zx y zx y zx y z

x y zx y zx y zx y zx y z

Wedge Direction 
and Dihedral 
Angel Texture

Wedge 1

x y z...

...Facet Normal 
Texture

Adjacent Facet 
Normal Texture

Wedge 2 Wedge Wedge n3 Wedge 4

Figure 6. Texture information of actual wedges, including the
direction of the wedge, the dihedral angle and the normal of adjacent
facets of the wedge.

3.2.2. The Wedge Shader

The visible wedges are generated in two rendering passes. The first pass
renders the facets of the target, but writing into the wedge texture is
disabled. This implies that the first pass just renders the depth values
into the depth buffer. In the second pass, the actual wedges that are
detected in the preprocessing stage are rendered with the depth buffer
of the first pass, and now writing into the wedge texture is allowed.
In this manner, the shadowed wedges are removed, because the depth
value of the invisible wedge is larger than the corresponding depth
value in the depth buffer generated in the first pass. Hence, only the
visible wedges are rendered into the wedge texture.
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In the second pass, the texture coordinates are used to transfer the
wedge position and wedge index to the programmable GPU and the
Wedge Shader outputs the texture coordinates as the color information
to the wedge texture. The visible wedge position are recorded in RGB
components of the pixel in the wedge texture, and the A component
is the corresponding the wedge index number, which starts with 1 to
differ from the black color of background. It can be noted that the
GPUECO method bypass the limitation of visible wedge detection in
the GRECO method by rendering the wedge index into the wedge
texture.

As shown in Fig. 7, an image of actual wedges of an aircraft
rendered by the Wedge Shader is presented. The color components
(R, G, B) are equal to the 3D position (x, y, z) of visible wedges, and
the black color is due to that each component of the position (x, y, z)
is less than zero.

z

x y

Figure 7. Rendered image of actual wedges of an aircraft. The color
components (R, G, B) are the 3D position (x, y, z) of visible wedges
in the radar direction. The background is changed from black to white
to illustrate the part that each component of the position (x, y, z) is
less than zero.

3.2.3. The EEC Shader

In the next EEC Shader, the position and index of visible wedges
can be obtained from the wedge texture, and the unit direction along
the wedge and the dihedral angle, and the unit normal of adjacent
facets can be accessed from three static textures through the wedge
index. The size of pixel, the frequency, the direction of incidence
and observation, and the direction of incident and observational
polarization are parameters as input for the EEC Shader.

The Ufimtsev PTD coefficients could be obtained using a very
simple linear approximation in the GRECO method [3]. However, the
PTD coefficients are only valid in observational direction of the Keller
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cone. Mitzner developed the incremental length diffraction coefficients
(ILDC) [26], which is valid for bistatic diffraction calculation. In this
paper, Michaeli’s physical theory of diffraction equivalent edge currents
(EEC) [27, 28] will be considered.

According to the EEC theory, a high-frequency approximation
to the fringe wave (FW) field is calculated from a line integral along
the visible part of the wedge. The formulation in terms of diffraction
coefficients can be found in the literature [27, 28]. The final formula
for the wedge crossing the neighborhood pixels is defined as

�Ed =
exp(−jks)

2πs
dl

[
(Dm − D′

⊥)ês
⊥ cos γ − (De − D′

‖)
sinβ

sinβ′ ê
s
‖ sin γ

−(Dem sinβ′ − D′
x)

sinβ

sinβ′ ê
s
‖ cos γ

]
(2)

where dl is the length of the visible wedge in the neighbor pixels, which
can be calculated from the wedge direction and the incident direction,
ês
⊥ and ês

‖ are the unit vectors of the local coordinate systems as defined
in [25, 29], γ is the angle subtended by the incident electric field and the
normal to the plane of incidence, β and β′ are the angles between the
wedge and the incident and observational direction, respectively, and
the D are the diffraction coefficients, the detail formulas are explained
in [25, 29].

The EEC Shader applies the Eq. (2) to calculate the scattered field
of each rendered pixel of visible wedges in the data-parallel method
similar to the PO Shader, and produces the results of vv, vh, hv, and
hh polarization. These results are added to the scattered fields of the
two field textures generated in the PO Shader in the corresponding
position.

3.3. Data Reducing in GPUECO

When the PO Shader and EEC Shader are finished, the scattered fields
of vv, vh, hv, and hh polarization, total 8 floating-point numbers, are
available in two field textures, and should be summed up to obtain the
total scattered field.

One straight way is that reading the data of these two textures
back to CPU and summing up the scattered filed in CPU. However,
if the resolution of the texture is 1024 × 1024, each direction needs
read back 32 M (1024 × 1024 × 8 × 4) data, and CPU has to traverse
these memories to obtain the total scattered field, which reduces the
performance of the GPUECO method.

The more effective method is to reduce the large vector of scattered
fields to 8 floating-point numbers in GPU and read the 8 floating-point
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numbers back to CPU, which is called a parallel reduction [20]. The
parallel reduction avoids the read back of large texture to CPU and
simultaneously reduces the processing time of CPU.

The parallel reduction is implemented in the Reduce Shader,
which will be invoked in multiple passes. On each pass, the size of
the rectangle is half of the rectangle of last pass. The rectangle of
the first pass is equal to the size of the field texture. In the fragment
processor, the Reduce Shader reads the data of a 2× 2 block from the
field texture (previous results), sums up the data of the block, and
outputs the result to the corresponding pixels of the field texture (new
results). The Reduce Shader is applied in general O(log n) passes,
where n is the size of the field texture. The final pass output two
pixels, which are the total scattered fields. Fig. 8 shows the addition
reduction on a texture with one floating-point component.
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Figure 8. Addition reduction preformed with multiple passes.

4. NUMERICAL RESULTS

In order to validate the accuracy and computational time of the
GPUECO method, several numerical examples are presented. The
calculations were performed using a 2.8 GHz Pentium(R) D CPU and
NVIDIA GeForce 7950 GT graphics card. The maximum resolution
of the frame buffer is usually 4096 × 4096, while the 1024 × 1024
resolution is used for the following predictions in order to balance the
discretization error [30] and computation time.

The first example is a sphere with radius 1 m for 180-degree
bistatic RCS calculation in 181 equal-spaced incident directions at
1 GHz frequency. Fig. 9 shows the RCS comparison of both vv-
polarization and hh-polarization of the result of GPUECO method
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(solid line) and result of MLFMM (dot line). The aspect angle of zero
degree means the direction of observation is parallel to the incident
direction. The result of GPUECO for the zero degree is 5.07 dBsm,
which is great agreement with the analytical solution 10 lg πr2 =
4.97 dBsm. When the aspect angle is larger than 90 degree, there
are some deviations from the MLFMM data. This is due to that PO
assumes the zero induced current in the shadowed regions. However,
the induced current in shadowed regions could not be omitted when
the region is visible from the observational direction.

(a) (b)

Figure 9. Comparison of our results (solid line) and MLFMM
data (dot line) for a sphere at 1 GHz, (a) vv-polarization, (b) hh-
polarization.

The second simulation is used to verify the efficiency of visible
wedge detection and the accuracy of EEC. The cube with side length
1 m is used to predict the 90 degree monostatic RCS in 91 equal-spaced
incident directions at 3 GHz frequency. Both vv-polarization and hh-
polarization RCS of the GRECO result (dot line), the GPUECO result
(solid line), and MLFMM result (circle) are illustrated in Fig. 10. The
GPUECO result shows an excellent agreement with the MLFMM data.
As the GRECO method could not detect the wedge on the contour, the
deviation of the GRECO result from the MLFMM data is larger than
the deviation of the GPUECO result and MLFMM data, especially the
vertical polarization between 30◦ and 60◦.

Besides the relatively simple objects, the generic complex missile
is used to validate the efficiency of the GPUECO method for general
complex objects. Fig. 11 shows the geometry of the generic missile
(1.1 × 0.25 × 0.2 m) and the horizontal polarization result (solid line)
compared with the measured data (dot line). The monostatic RCS
is calculated from φ = 0◦ to φ = 360◦ in 361 equal-spaced incident
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directions at 7.5 GHz frequency. Very good agreement is found between
these two results. The deviation near 180◦ is because there is a cavity
on the tail of the missile, however, the GRECO method does not
consider the multi-scattered terms.

(a) (b)

Figure 10. Comparison of our results (dot line), GRECO result
(solid line) and MLFMM data (circle) for a cube at 3 GHz, (a) vv-
polarization, (b) hh-polarization.
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φ

(a) (b)

Figure 11. (a) The geometry of generic complex missile, (b)
comparison of our results (solid line) and the measured data (dot line)
of the missile at 7.5 GHz, hh-polarization.

The GPUECO method employs graphical hardware not only to
remove the shadowed surfaces and wedges from the radar direction,
but also to calculate the scattered field in the data-parallel fashion.
The multiple fragment processors provide the powerful computing
power for the electromagnetic computing. In addition, the Z-Cull
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technique allows fragment processors dealing with the same branching
and the parallel reduction technique further improves the efficiency of
the RCS prediction. Table 1 show how the computation time reduces
with these different accelerated techniques. The CPU-GRECO read
the frame buffer of rendered pixels back to CPU and calculate the
scattered field in CPU. The GPUECO I calculate the scattered fields of
rendered pixels in GPU without using the Z-Cull and parallel reduction
techniques, while the GPUECO II only use the Z-Cull technique
and the GPUECO III make use of both the Z-Cull and parallel
reduction techniques. From Table 1, we can conclude that significant
speedups can be achieved by applying the Z-Cull and parallel reduction
techniques in GPUECO, and the GPUECO method is at least 30 times
faster than the CPU-GRECO method.

Table 1. Comparison of computation time (sec). The CPU-GRECO
and GPUECO calculate the scattered field in CPU and GPU without
using the Z-Cull and parallel reduction techniques, respectively. The
GPUECO II is accelerated using the Z-Cull technique only and both
Z-Cull and parallel reduction are used in GPUECO III.

Models CPU-GRECO GPUECO I GPUECO II GPUECO III

Sphere 412.43 9.307 7.459 1.804

Cube 317.20 6.064 4.256 1.411

Missile 120.37 23.77 14.97 3.57

5. CONCLUSION

It has been shown that thanks to the rapid development of graphics
hardware, the GPUECO method moves all electromagnetic computing
code to graphics hardware. Besides the hidden surface removal
technique, the programmability of the powerful GPUs in conjunct with
the Z-Cull and parallel reduction techniques significantly improves
the computational efficiency of the RCS prediction. In addition,
the floating-point precision and exact wedge detection enhance the
accuracy of the scattered field effectively. Numerical results show
excellent agreement with the exact solution and the measured data
and demonstrate that the GPUECO method can greatly reduce the
computational time.
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