Vol. 80
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-29
Nonlinear Stability Analysis of an Oscillator with Distributed Element Resonator
By
Progress In Electromagnetics Research, Vol. 80, 241-252, 2008
Abstract
In this paper a complete analysis to the stability of a microwave oscillator with distributed element resonator is presented. In this type of oscillators, the circuit description changes form ordinary differential equations to partial deferential equations. In this paper a Gunn diode oscillator with distributed elements resonator is analyzed. The instability condition of the startup phase and the stability condition of the steady state oscillation is investigated.
Citation
Hamid Vahdati, and Abdolali Abdipour, "Nonlinear Stability Analysis of an Oscillator with Distributed Element Resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
doi:10.2528/PIER07111701
References

1. Giannini, F. and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley, 2004.

2. Coddington, E. A. and N. Levinston, Theory of Ordinary Differential Equations, Mc. Graw-Hill Inc., 1983.

3. Suarez, A. and A. Quere, Stability Analysis of Nonlinear Microwave Circuit, Artech House, 2003.

4. Shi, Z. G. and L. X. Ran, "Microwave chaotic Colpitts oscillator: design, implementation and applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1335-1349, 2006.
doi:10.1163/156939306779276802

5. Shi, Z. G. and S. Qiao, "Ambiguity function of direct chaotic radar employing microwave chaotic Colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
doi:10.2528/PIER07072001

6. Qiao, S., T. Jiang, L. Ran, and K. Chen, "Ultra wide band noise signal radar utilizing microwave chaotic signals and chaos synchronization," PIERS Online, Vol. 3, No. 8, 1326-1329, 2007.
doi:10.2529/PIERS070417101142

7. Jackson, R. W., "Rollett proviso in the stability of linear microwave circuits—Atutorial," IEEE Transaction of Microwave Theory and Technique, Vol. 54, No. 3, 993-1000, 2006.
doi:10.1109/TMTT.2006.869719

8. Sanchez, D. A., Ordinary Differential Equation and Stability Theory, An Introduction, 1960.

9. Rizzoli, V. and A. Lipparini, "General stability analysis of periodic steady state regimes in nonlinear microwave circuits," IEEE Transaction of Microwave Theory and Technique, Vol. MTT 33, 30-37, 1985.
doi:10.1109/TMTT.1985.1132934

10. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horvath, "Mathematical modeling of nonlinear waves and oscillations in gryomagnetic structures by bifurcation theory methods," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363

11. Suarez, A., S. Jeon, and D. Rutledge, "Stability analysis and stabilization of power amplifiers," IEEE Microwave Magazine, Vol. 7, No. 5, 145-151, 2006.
doi:10.1109/MW-M.2006.247915

12. Mons, S., J. C. Nallatamby, R. Quere, P. Savary, and J. Obregon, "Unified approach for the linear and nonlinear stability analysis of microwave circuits using available tools," IEEE Transaction of Microwave Theory and Technique, Vol. 47, No. 12, 2403-2410, 1999.
doi:10.1109/22.808987

13. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101

14. Kryzing, E., Advance Engineering Mathematics, Printics Hall, 2002.

15. Makeeva G. S., O. A. Golovanov and and M. Pardavi Horvath, "Numerical simulation of nonlinear and parametric oscillations in a semiconductor resonator structure," Progress In Electromagnetics Research Symposium, 2006.

16. Kumar, P., T. Chakravarty, G. Singh, S. Bhooshan, and S. K. Khah, "Numerical computation of resonant frequency of gap coupled circular microstrip antenna," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1303-1311, 2007.
doi:10.1163/156939307783239465

17. Geyi, W., "Time-domain theory of metal cavity resonator," Progress In Electromagnetics Research, Vol. 78, 219-253, 2008.
doi:10.2528/PIER07090605

18. Psarros, I. and G. Fikioris, "Two term theory for infinite linear array and application to study of resonances," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 623-645, 2006.
doi:10.1163/156939306776137809

19. Migulin, V. V., Basic Theory of Oscillation, Mir Publisher, 1983.

20. Kung, F. and H. T. Chuah, "Stability of classical finite diference time domain (FDTD) formulation with nonlinear element — Anew perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

21. Wu, C. G. and G. X. JiangKung, "Stabilization procedure for time-domain integral equation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1507-1512, 2007.

22. Tang, M. and J. F. Mao, "Transient analysis of lossy nonuniform transmission lines using time step integration method," Progress In Electromagnetics Research, Vol. 69, 257-266, 2007.
doi:10.2528/PIER06123001

23. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhediu, "Time domain analysis of active transmission lines using FDTD technique (application to microwave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

24. Khalil, H., Nonlinear Systems, Printice Hall, 2002.

25. Peidaee and A. R. Baghai-Wadji "On the calculation of polynomially perturbed harmonic oscillators," PIERS Online, Vol. 3, No. 4, 486-489, 2007.
doi:10.2529/PIERS061202155000