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Abstract—In this paper a complete analysis to the stability of a
microwave oscillator with distributed element resonator is presented.
In this type of oscillators, the circuit description changes form ordinary
differential equations to partial deferential equations. In this paper a
Gunn diode oscillator with distributed elements resonator is analyzed.
The instability condition of the startup phase and the stability
condition of the steady state oscillation is investigated.

1. INTRODUCTION

Using of the distributed model is ubiquitous for microwave and
milliliter wave circuits [1]. While the lumped circuits have been
described using the ordinary differential equations “ODE”, the
distributed element circuits have been expressed using the partial
differential equations “PDE”. Theoretically, the stability issue of these
two types of equations are different [2].

In this paper, the PDE of a Gunn oscillator has been investigated
for its stability. Usually these types of oscillators have been analyzed
using the lumped elements equivalent of the distributed element
resonator [3]. But the distributed circuits could have multiple
resonance frequencies and the lumped circuits could have only one,
and hence the lumped elements equivalent is not adequate. On the
other hand these types of oscillators are more prone to instability and
even chaos [4–6]. While there are several tools for stability analysis
of ODE s [7–13], there is a few for PDE s. And the most important
tool for PDE is separation of variables method [14]. In the following
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Figure 1. A model of Gunn oscillator with transmission line resonator.

sections, the stability of a Gunn oscillator at different phases from the
start up to steady state has been studied.

2. FORMULATION OF A GUNN DIODE OSCILLATOR
WITH DISTRIBUTED RESONATOR

A configuration of a Gunn oscillator has been shown in Fig. 1.
Assume that the transmission line has a length of l with constructive
parameters of R( Ω

m), L(H
m), C( F

m) and very small resistance i.e.,

µ =
Rl√

L
C

� 1 (1)

Using the telegraphic equations and the boundary conditions, the
mathematical model of the oscillator is:
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The I-V characteristics of the Gunn diode which is the active element
of the oscillator is

iD(v) = S0v

(
1 − v2

3.v2
0

)
(3)

Where S0 denotes the negative small signal resistance of the Gunn
diode. By normalizing the variables as in (4)
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x

l
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t
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v

v0
, γ =
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C.l
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S0L

RCl
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the (2) could be simplified as
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∂u

∂y
− γ

∂2u

∂τ2
= µ

[
γ − S

(
1 − u2

)] ∂u
∂τ

(5)

u(1, τ) = 0

This is a hyperbolic partial differential equation with nonhomogeneous
boundary conditions. The first step in analyzing the oscillator is
finding its resonance frequencies [15–18]. For this purpose, it is
assumed that the circuit is lossless i.e., µ = 0 and hence (6) should
be solved,

∂2u

∂y2
− ∂2u

∂τ2
= 0 (6)

∂u

∂y
− γ

∂2u

∂τ2
= 0

u(1, τ) = 0

Using the separation of variables method, the solution of (6) is,

u = (A cos Λy +B sin Λy) cos(ωτ + φ) (7)

Applying the boundary condition at y = 0 and y = 1, it could be found
that the resonance frequencies satisfy (8),

cotωk = γωk (8)

This is a nonlinear equation and could be solved numerically or
graphically Fig. 2. It should be noted that the solutions of (8) are
not equidistant, it means that if ω is a resonance frequency then nω
is not another resonance frequency. It should be also noted that this
solution is a normalized one and the actual resonant frequency is:

Ω =
ωk

l
√
LC

(9)

For a typical oscillator with C1 = 1 pf, S0 = 0.02, v0 = 1 and
l = 100 mm on a RO4003 substrate with εr = 3.5, the resonance
frequencies are

Ω = 0.37, 1.11, 1.87, 2.63, . . . , 20.5, 21.6 GHz (10)

The existence of multiple resonance frequencies could be verified using
the commercial microwave CAD s. The Nyquist diagram Fig. 3, turn
around the point (0,1) for several times and each crossing the x-axis is
correspond to a resonance frequency.
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Figure 2. Multiple resonance frequency in a distributed circuit.
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Figure 3. Nyquist diagram of the oscillator using the tools of ADS
software.

3. STABILITY ANALYSIS AT THE STARTUP PHASE

For stability analysis of the startup phase, the oscillator equations are
linearize around the operation point.

∂2u

∂y2
− ∂2u

∂τ2
= 0 (11)
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= µ[γ − S]

∂u

∂τ

u(1, τ) = 0

The general solution of (11) could be written as

u = Y (y).T (t) =
(
A.eΛy +Be−Λy

) (
C.eP1τ +D.eP2τ

)
(12)

where P1,2 = −µ∓
√

µ2+4Λ2

2 . The exponents of the exponential functions
determine the response stability. Applying the boundary conditions at
y = 0 and y = 1, it could be found that,

B

A
= ∓jµS − Λγ (13)

B

A
= − cot Λ

By (13) and using the fact that as µ → 0, Λ → ω, it is reasonable to
expand Λ as

Λ = ω + µΛ1 (14)

Substituting (14) in (9), it could be obtained

Λ1 = ±jS/
(
1 + γ + γ2 ∗ ω2

)
(15)

Hence, the instability “startup” condition of the DC point is

S >
(
1 + γ + γ2ω2

)
/2 (16)

The two sides of this condition has been plotted in Fig. 4. It shows that,
when ω increases, the possibility of the oscillation startup decreases.
Hence the oscillator can oscillate at a limited number of its resonance
frequencies. Using the finite difference method, the oscillator has been
analyzed. Applying the finite difference method to the oscillator, needs
some cautions about its numerical stability [20–23]. In Fig. 5, it has
been shown that when the circuit is perturbed by a small pulse, the
oscillator enters its startup phase and finally settles to a steady state
response. Using the harmonic balance algorithm and with the first
resonance frequency in a microwave CAD like ADS, the steady state
solution could be found. This response has been plotted at the bottom
of Fig. 5. Here there arises an important question and it is, “as
the circuit has several resonance frequencies and for each resonance
frequency, the harmonic balance converge to specific response, which of
them, is the actual response?”. This is the issue of oscillation stability
analysis.
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Figure 4. Instability margin for the startup phase.
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Figure 5. Oscillator analysis by FDTD with a pulse perturbation and
the comparison of its steady state response with ADS solution.
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4. STABILITY ANALYSIS OF THE STEADY STATE
RESPONSE OF THE OSCILLATOR

To check the the oscillation stability, the reaction of steady state
response to small perturbations should be analyzed. As shown in
Appendix A, the steady state response of the oscillator is:

u = Ak(cos(ωky) − ωkγ sin(ωk) cos(ωkτ) (17)

where
Ak = 4

[
1 −

(
1 + γ + ω2γ2

)
/2

]
(18)

For stability analysis a small perturbation is exerted to the steady
state solution and it is checked, whether the effects of this perturbation
vanishes during the time or not [24, 25]? If Vs(y, τ) be the steady state
response and δ(y, τ) be a small perturbation, then we apply (19) to
the oscillator equation.

v(y, τ) = vs(y, τ) + δ(y, τ) (19)

By substitution of (19) in (7), we could write:

∂2δ
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2
)] ∂δ
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δ(1, τ) = 0

Using the relation cos2 ωkτ = (1 + cos 2ωkτ)/2, and the fact that 2ωk

is not a resonance frequency, the (20) could be simplified as (21)
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The Equation (21) has the same form of (9) which we encountered in
the stability analysis of the startup phase. Here S(1 − (A2

k)/2) has
been replaced S in (9). Hence the oscillator stability condition can be
derived as (22).

A2
k > 2

[
1 −

(
1 + γ + γ2ω2

i

)
/2S

]
(22)
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Then the oscillation with the amplitude of Ak is stable if (22) is
satisfied for all resonance frequencies. In applying this condition to the
above Gunn oscillator, it could be seen that (22) is violated for some
resonance frequency e.g., for resonance frequency of 20.5 GHz. Then
the oscillator is unstable. The oscillation instability can be verified
by time domain analysis. As shown in Fig. 6, when the oscillator
is perturbed with a small random signal, its steady state response is
different from 5 and this shows the instability of this oscillator.
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Figure 6. The oscillator response when perturbed by a noise like
perturbation.

5. CONCLUSION

In this paper the stability of a microwave oscillator with distributed
elements resonator has been studied. This oscillator has been described
by its partial differential equation with inhomogeneous boundary
conditions. Here an analysis of the startup phase, steady state
behavior and oscillation stability have been presented. The instability
condition for the startup phase and the stability condition for the
oscillation have been derived theoretically. The oscillator response
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has been also simulated numerically. Increasing applications of high
frequency circuits with transmission line elements which convert the
circuit description from the ODE to PDE, clarify the need for such
investigation. This type of theoretical analysis is also necessary as a
criterium for the correctness of the simulation and numerical methods.

APPENDIX A. STEADY STATE RESPONSE

Clearly an oscillator oscillates at it its resonance frequencies and we
should only find its amplitude. For this purpose the PDE (5) should
be solve. We assume the solution of the form,

u = u0 + µu1 (A1)

where u0 is the solution of the lossless circuit “µ = 0” which is derived
in the first section of this paper. In this case

u0 = A(cos(ωy) − ωγ sin(ωy)) cos(ωτ) (A2)

and ω is the resonance frequency (8) and A is the oscillation amplitude.
Substituting the (A2) in (5) and ignoring µ∂v1

∂τ we have

∂2u1

∂y2
− ∂2u1

∂τ2
= −Aω(cos(ωy) − ωγ sin(ωy)) sin(ωτ) (A3)

∂u1

∂y
− γ

∂2u1

∂τ2
= −(γ − S]Aω sin(ωτ) − SA3ω cos2(ωτ) sin(ωτ)

u1(1, τ) = 0

To solve this equation, it should be noted that the resonance
frequencies of this oscillator are not equidistant and hence if ω1 be the
resonance frequency, then 2ω1 and 3ω1 are not and these terms “like
the describing function method” could be ignored. Based on this, to
find the steady state response of the oscillator, (A4) should be solved.

∂2u1

∂y2
− ∂2u1

∂τ2
= −Aω(cos(ωy) − ωγ sin(ωy)) sin(ωτ) (A4)

∂u1

∂y
− γ

∂2u1

∂τ2
= −Aω

[
γ − S

(
1 − A2

4

)]
sin(ωτ)

u1(1, τ) = 0

Assuming a solution of the form v1 = V (y) sin(ωτ) and substituting in
(A2),

d2V

y2
+ ω2V = −Aω(cos(ωy) − ωγ sin(ωy)) (A5)
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dV

dy
+ γω2V = −Aω

[
γS

(
1 − A2

4

)]

V (1, τ) = 0

This is an ODE and its solution is

V (y)=vh+vp =B cos(ωy)+sin(ωy)−1/2Aωγy cos(ωy)−1/2Ay sin(ωy)
(A6)

Using the boundary conditions, we have

C + γωB = −Aγ/2 +AS

(
1 − A2

4

)
(A7)

C + γωB = A
(
1 + ω2γ2

)

Solving (A7), the amplitude of the kth resonance frequency is,

Ak = 4
[
1 −

(
1 + γ + ω2γ2

)
/2

]
(A8)

As (A8) shows, it is possible that the oscillator has steady state
oscillation at different frequencies and it should be also noted that
the amplitude of the oscillation decrease with increasing its frequency.
Hence the steady state response of this oscillator could be expressed
as:

u = Ak(cos(ωky) − ωkγ sin(ωk) cos(ωkτ) (A9)

where ωk is the kth resonance frequency and Ak is its amplitude.
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