Vol. 80
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-12-02
A Novel Design Methodology of Multi-Clad Single Mode Optical Fiber for Broadband Optical Networks
By
Progress In Electromagnetics Research, Vol. 80, 253-275, 2008
Abstract
In this paper two multi-clad RI- and RII-type optical fiber structures for small dispersion and dispersion slope as well as large bandwidth are considered and novel design strategy for this purpose is presented. The suggested design method uses the Differential Evolution (DE) approach. We put absolute value of dispersion factor as fitness function in differential evolution method. This algorithm successfully introduces a special fiber including so small dispersion and dispersion slope in the predefined wavelength duration. Also, the proposed method can set zero dispersion wavelengths with high accuracy compared other traditional methods. The designed dispersion-shifted RI single-mode fiber has the bandwidth of 600nm and the max amount of 1.36 (ps/km/nm) in that duration which is an ideal result.
Citation
H. Shahoei, Hassan Ghafoori-Fard, and Ali Rostami, "A Novel Design Methodology of Multi-Clad Single Mode Optical Fiber for Broadband Optical Networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003
References

1. Varshney, R. K., A. K. Ghatak, I. C. Goyal, and S. Antony, "Design of a flat field fiber with very small dispersion slope," Optical Fiber Technology, Vol. 9, 189-198, 2003.
doi:10.1016/S1068-5200(03)00042-7

2. Tian, X. and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Optics Communications, Vol. 230, 105-113, 2004.
doi:10.1016/j.optcom.2003.11.037

3. Zhang, X. and X. Tian, "Analysis of waveguide dispersion characteristics of WI-and WII-type triple-clad single-mode fibers," Optics & Laser Technology, Vol. 35, 237-244, 2003.
doi:10.1016/S0030-3992(02)00175-5

4. Kato, T., M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Optical Fiber Technology, Vol. 8, 231-239, 2002.
doi:10.1016/S1068-5200(02)00007-X

5. Agrawal, G. P., Fiber-Optic Communication Systems, 3rd edition, 2002.

6. Zhang, X. and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI-and WII-type triple-clad singlemode fibers," Optics & Laser Technology, Vol. 37, 167-172, 2005.
doi:10.1016/j.optlastec.2004.03.006

7. Ghatak, A. and K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, 2002.

8. Nunes, F. D. and C. A. de Souza Melo, "Theoretical study of coaxial fibers," Applied Optics, Vol. 35, 388-398, 1999.

9. Holland, J. H., Adaptation in Natural and Artificial Systems, 2nd edition, 1992.

10. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

11. Spears, W. M.K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," Proceedings of European Conference on Machine Learning, Vol. 667, 442-459, 1993.

12. Baeck, T., F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionarv algorithms for parameter optimization," J. Evol. Comput., Vol. 1, 1-24, 1993.
doi:10.1162/evco.1993.1.1.1

13. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT, 1992.

14. Sakai, J.-I. and T. Kimura, "Bending loss of propagation in arbitrary-index profile optical fibers," Applied Optics, Vol. 17, No. 10, 1978.

15. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, 1988.

16. Abromowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, 358, Gr aphs, 1972.

17. Zhang, X., L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the tripleclad single-mode fiber with a depressed index inner cladding," Optical Fiber Technology, Vol. 10, 215-231, 2004.
doi:10.1016/j.yofte.2003.11.001

18. Hattori, H. T. and A. Safaei-Jazi, "Fiber designs with significantly reduced nonlinearity for very long distance transmission," Applied Optics, Vol. 37, 3190-3197, 1998.

19. Marcuse, D., A. R. Chraplyvy, and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission," J. Lightwave Technology, Vol. 9, No. 1, 121-128, 1991.
doi:10.1109/50.64931

20. Naka, A. and S. Saito, "In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion," J. Lightwave Technology, Vol. 12, No. 2, 280-287, 1994.
doi:10.1109/50.350593

21. Anderson, D. and M. Lisak, "Propagation characteristics of frequency chirped super-Gaussian optical pulses," Opt. Lett., Vol. 11, No. 9, 569-571, 1986.

22. Marcuse, D., "RMS width of pulses in nonlinear dispersive fibers," J. Lightwave Technol., Vol. 10, No. 1, 17-21, 1992.
doi:10.1109/50.108730

23. Florjanczyk, M. and R. Tremblay, "RMS width of pulses in nonlinear dispersive fibers: Pulses of arbitrary initial form with chirp," J. Lightwav. Technol., Vol. 13, No. 8, 1801-1806, 1995.
doi:10.1109/50.405327

24. Potasek, M. J., G. P. Agrawal, and S. C. Pinault, "Analytic and numerical study of pulse broadening in nonlinear dispersive optical fibers," J. Opt. Soc. Am. B, Vol. 3, No. 2, 205-211, 1986.

25. Kikuchi, N. and S. Sasaki, "Analytical evaluation technique of self phase-modulation effect on the performance of cascaded optical amplifier systems," J. Lightwave Technol., Vol. 13, No. 5, 868-878, 1995.
doi:10.1109/50.387804

26. Xu, B. and M. Brandt-Pearce, "Comparison of FWM and XPM induced crosstalk using Volterra series transfer function method," J. Lightwave Technol., Vol. 21, No. 1, 40-53, 2003.
doi:10.1109/JLT.2002.806360

27. Rugh, W. J., Nonlinear Systems Theory, the Volterra/Wiener Approach, 2001.

28. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

29. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406

30. Biswas, A., "Dynamics of gaussian and super-Gaussian solitons in birefringent optical fibers," Progress In Electromagnetics Research, Vol. 33, 119-139, 2001.
doi:10.2528/PIER00101203

31. Grobe, K. and H. Braunisch, "A broadband model for single-mode fibers including nonlinear dispersion," Progress In Electromagnetics Research, Vol. 22, 131-148, 1999.
doi:10.2528/PIER98090301

32. Oullette, F., "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Optics Letters, Vol. 12, 847-849, 1987.

33. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702

34. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

35. Rostami, A. and A. Andalib, "A principal investigation of the group velocity dispersion (GVD) profile for optimum dispersion compensation in optical fibers: A theoretical study," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402

36. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

37. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
doi:10.2528/PIER02021703

38. Mishra, M. and S. Konar, "High bit rate dense dispersion managed optical communication systems with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.
doi:10.2528/PIER07091305

39. Shahi, A. K., V. Singh, and S. P. Ojha, "Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding," Progress In Electromagnetics Research, Vol. 75, 51-62, 2007.
doi:10.2528/PIER07051601

40. Biswas, A. and S. Konar, "Theory of dispersion-managed optical solitons," Progress In Electromagnetics Research, Vol. 50, 83-134, 2005.
doi:10.2528/PIER04051301

41. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

42. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

43. Guo, L. and C. Kim, "Study on the two-frequency scattering cross section and pulse broadening of the one-dimensional fractal sea surface at millimeter wave frequency," Progress In Electromagnetics Research, Vol. 37, 221-234, 2002.
doi:10.2528/PIER02042601

44. Singh, V., "Modal analysis and waveguide dispersion of an optical waveguide having a cross-section of the shape of a cardiod," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

45. Georgia, E. M., A. D. Panagopoulos, and J. D. Kanellopoulos, "Millimeter wave pulse propagation through distorted raindrops for los fixed wireless access channels," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1235-1248, 2006.
doi:10.1163/156939306777442953

46. Najjar-Khatirkolaei B., M. Al-Kanhal and and A. R. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

47. Angiulli, G., "On the computation of nonlinear eigenvalues in electromagnetic problems," J. of Electromagnetic Waves and Applications, Vol. 21, No. 4, 527-532, 2007.
doi:10.1163/156939307780616838