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Abstract—In this paper two multi-clad RI- and RII-type optical
fiber structures for small dispersion and dispersion slope as well
as large bandwidth are considered and novel design strategy for
this purpose is presented. The suggested design method uses the
Differential Evolution (DE) approach. We put absolute value of
dispersion factor as fitness function in differential evolution method.
This algorithm successfully introduces a special fiber including so small
dispersion and dispersion slope in the predefined wavelength duration.
Also, the proposed method can set zero dispersion wavelengths with
high accuracy compared other traditional methods. The designed
dispersion-shifted RI single-mode fiber has the bandwidth of 600 nm
and the max amount of 1.36 (ps/km/nm) in that duration which is an
ideal result.

1. INTRODUCTION

Optical fiber communication is interesting method for realization
of high speed data transmission. Optical fiber is physical media
for optical signal propagation and has two basic problems must be
considered in data transmission. Optical loss and dispersion are
these physical drawbacks of the fiber. Optical amplifiers can be
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used for compensation of all loss occurred in propagation through
fiber. Semiconductor optical amplifiers (SOA), erbium doped fiber
amplifiers (EDFA) and Si-Nc EDFA are used for loss compensation.
Dispersion in optical fiber limits bit rate of data transmission. For
compensation of dispersion there are different methods. Dispersion
compensators generally can be used and after a limited fiber length
signal can be refreshed. But all of these methods have limited
success and finally after some kilometers of fiber length repeaters are
required. Dispersion management of fiber optic is important task in
modern optical communication especially for multi-wavelength data
transmission in wavelength division multiplexing (WDM) or dense
wavelength division multiplexing (DWDM). So, suitable refractive
index profile of fiber including small dispersion and dispersion slope is
requested. Especially dispersion flattened structures for modern multi-
wavelength communications highly interested.

For this purpose there are some interesting reported papers, which
we are going to review some of them and present their limitations for
the proposed purposes.

As a first and interesting work, we can point out to paper
presented by Varshney et al. [1]. In this paper an optical flat fiber
was presented to minimize dispersion and dispersion slope. In this
design, core radius, effective area and carrier wavelength are 1µm,
56.1µm2 and 1.55µm respectively, which are used and according
to their calculation, dispersion duration within [1530–1610]µm and
dispersion slope at 1.55µm are 2.7–3.4 ps/km.nm and 0.01 ps/km.nm2

respectively. The presented paper introduces 80 nm bandwidth that is
small for today DWDM applications. Also, the reported dispersion is
enough high for high-speed data transmission. Finally, the presented
work includes only C and L bands for data transmission.

A second work reported by Tian et al. [2] that discuss about
increasing of the effective area for RI and RII triple-clad fibers. This
paper reported 4.5 ps/km.nm for dispersion within [1540–1620]µm
wavelength duration. Also, for this design, dispersion slope reported
about 0.006 ps/km.nm within [1540–1620]µm wavelength duration.
The proposed design has small bandwidth for DWDM applications
and also high dispersion in this duration. The calculated dispersion
slope in this paper is not so small for high-speed data transmission.

There are other papers presented to minimize dispersion and
shift to requested values [3–6]. In these works dispersion calculation,
minimization and shifting were discussed. The obtained results don’t
satisfactory. Also, in [5] there are very interesting methods presented
for dispersion compensation and management.

Also, general information about physical mediums carrying
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information especially for coaxial and optical fibers including
capabilities and limitations can be found in [7, 8].

So, the presented optical fibers don’t have very interesting
parameters to communicate high performance that satisfy today
requested demands.

For fiber design optimization methods using GA [9–13] can be
used to find out optimum values for each structure especially as an
example for RII triple-clad optical fibers. In this case there are 6 optical
and geometrical parameters, which must be determined for optimum
operation. In this GA approach 50 initial individuals are considered
and with increase of the individuals better situation can be obtained.
Detail of GA technique applied to this problem will be discussed in the
subsequent sections. For doing this work, one can be used the Transfer
Matrix Method (TMM) [14, 15] developed in cylindrical coordinate
for evaluation of the modal analysis of the proposed structure. In
evaluation of this technique some interesting especial functions are
used [16]. In the developed technique, it was proposed some interesting
fitness functions to minimize the pulse broadening factor [17] (small
dispersion as well as dispersion slope) and maximize the bandwidth
(wavelength duration between zeros of the dispersion curve) as well as
dispersion be lower than a threshold. Also, in these situations nonlinear
effects can limit the propagation performance that discussed something
about in [18–31].

Also, different aspects of modal analysis, pulse propagation
through nonlinear fiber and design of dispersion compensation in
different structures were done [32–46].

Thus in this paper, we try to present a new design methodology
based on Differential Evolution (DE) optimization approach. The
proposed method illustrates efficient design methodology and so
interesting features can be obtained.

Organization of the paper is as follows.
In Section 2 mathematical principles for description of dispersion

is presented. In this Section RI- and RII-type optical fibers are studied.
Design strategy is discussed in Section 3. Simulation results and
discussion is illustrated in Section 4. Finally the paper ends with a
short conclusion.

2. MATHEMATICAL FORMULATION

The mathematical background for description of the suggested
structures is introduced in this section. The index of refraction profiles
of RI- and RII-type fiber structures are shown in Fig. 1. In the
proposed structures (RI and RII) the wave vector corresponding to
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guided waves are divided into two and one regions respectively. These
regions are shown in Fig. 1.
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Figure 1. Refractive Index Profiles of RI- and RII-type Single mode
triple clad optical fibers, (a) RI, (b) RII.

According to the wave equation for electromagnetic fields the
following equation can be expressed.
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Under LP approximation and using the boundary conditions of
electromagnetic fields we can obtain the characteristic equations of
these fibers as Eq. (2) and Eq. (3).∣∣∣∣∣∣∣∣∣∣
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where Jm, Ym, Im and Km are Bessel and modified Bessel functions.
The parameters used in these relations are given as follow.
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In these relations ni is the refractive index of the ith layer of the RII
profile. The optical parameters are defined as

P =
b

c
, Q =

a

c
, (5)

Also geometrical parameters defined as follow.
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For RII fibers the normalized frequency is introduced also by:

V = k0a
√
n2
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4, (7)

and the normalized propagation constant is defined as follow.
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In the following, in order to calculate the dispersion and dispersion
slope in the proposed structures, the total dispersion (D) and the
dispersion slope (S), which include waveguide and material dispersion
are given in Eq. (9) and Eq. (10), respectively,
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where c and N4 = d(k0n4)/dk0 are speed of light in free space and
the group index of outer clad respectively. In simulation results for
evaluation of the dispersion characteristics, we assumed m = 0 for
calculation of determinants appeared in Eq. (2) [3, 4].

It is necessary to gain d(V B)/dV , V [d2(V B)/dV 2] and
V 2[d3(V B)/dV 3] relations to complete the calculation of Eqs. (9) and
(10). To achieve these terms basic relations appeared in Eqs. (2), and
(3) should be used and results are given in Eqs. (11)–(14) considering
Eqs. (7) and (8).
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Another parameter that we pay attention on and should calculate
is dispersion length. Dispersion length is the lengths that after passing
that the pulse width of the unchriped input pulse broaden to as

√
2

times as input pulse width. This parameter can be calculated by using
Eq. (15).

LD =
t2i
|β2|

, (15)

where ti and β2 are the full wave at half-maximum of intensity
distribution at input of the fiber and the group velocity dispersion.
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3. DESIGN STRATEGY

As it was mentioned, our goal of optimization is to obtain an especial
specification (optical and geometrical parameters) for optical fiber in
which the obtained parameters support dispersion and dispersion slope
in the possible minimum level in broad wavelength duration. The
dispersion and slope are directly related to the structure of the optical
fiber such as the diameter and refractive index of different layers in the
fiber. We can include all of these specifications in optical (a, P , Q)
and geometrical parameters (R1, R2, ∆) and just work with them. The
optimization technique in this paper is based on Differential Evolution
(DE). DE is a successful method to obtain our goals. The obtained
results of this method are better than reported results and our obtained
results of other methods such as GA (genetic algorithm). Firs we a
shortly introduce DE method and then explain our strategy to design
purpose fibers.

Differential Evolution (DE) is a stochastic nonlinear optimization
algorithm that is introduced by Storn and Price in 1996. In this
algorithm a population of solution vectors is successively updated by
addition, subtraction, and component swapping, until the population
converges, hopefully to the optimum. In this algorithm there isn’t
any derivation. There are few parameters to been set so it make
this algorithm simply to use. In other word, this method is a simple
and apparently very reliable method. DE method is started with
randomly chosen solution vectors. For each i in (1, . . . , NP), form
a ‘mutant vector’. Mutant vector is a variable vector. NP is the
number of population members in other hand the size of population.
DE confirmed the mutant vector as bellow:

vi = xr1 + F · (xr2 − xr3) , (16)

where r1, r2 and r3 are three mutually distinct randomly drawn indices
from (1, . . . , NP) and also distinct from i, and 0 < F ≤ 2. the
structure of this method is shown in Fig. 2.

Now we have some mutant and initial population that we should
select better individuals for next generation. For this purpose
we introduce a parameter by the name of crossover (CR), which
determined the amount of crossover (amount of changes in next
generation in compare of present generation) that we want to happen
in the next generation. CR can be selected as a number between [0–1].
We crossover vi and xi to form the trial vectors by the name of ui. For
each component of vector, DE draw a random number in U [0, 1], that
is called randj . CR here is like a cut-off parameter. If randj ≤ CR
then DE choose uij = vij , and in the other case DE choose xij as uij .
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Figure 2. How confirmed the mutant vector.

To ensure at leas some crossover is occurred, one component of uj is
selected a random to be included in vi. For example, maybe we have

xi = (xi1, xi2, xi3, xi4, xi5)
vi = (vi1, vi2, vi3, vi4, vi5)
ui = (vi1, xi2, xi3, xi4, vi5)

The next step is selection. If objective value COST (ui) is lower than
COST (xi), then ui replace xi in the next generation. Otherwise, DE
keeps xi.

We can say that DE is the only algorithm which consistently found
the optimal solution and often with fewer evaluations of functions than
the other methods. The are some reasons that DE method is a good
method. One of this reason is using simple subtraction to generate
random direction to produce new generation. The other reason is more
variation in population that led to more varied search over solution
space. We can also select size and direction of changing next generation
by ∆, that is (xr2 − xr3). DE has some parameters that help us to
variation the algorithm as we want. We can use the best vector instead
of random in xr1, and also we can use more vectors for more variation
instead of single difference, for example (xr2 − xr3 + xr4 − xr5).

Now we pay to the strategy of our design. First we introduce a
function as cost function that this function is a important factor in
optimization. Indeed all the algorithm is optimization of this function
that we should select it so that can obtain our goals. In this studying we
select absolute dispersion as cost function. The numbers of parameters
are six, optical and geometrical parameters, we select the amount of
CR as 0.8 to done more crossovers in DE and increasing the space of
searching parameters. One important factor in the results of running
DE is initial population, that we can select it in to ways. First can
be randomly selected or if we the approximate define of the solution,
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we can use the related parameters as initial population. In the second
way we can obtain better results in a shorter time. Here we first
randomly change the parameters and put the better results in the
initial population.

4. SIMULATION RESULTS

According to the presented formulism and structure in Section 2, in
this section the simulated results are illustrated to evaluate usefulness
of the introduced idea. In the first step, we optimize the proposed fiber
structure using DE algorithm considering sum of absolute dispersion
factor in the wavelength duration of [1.5–1.6] um as cost function.
Optimized parameters in this case including optical and geometrical
using DE method are given in Table 1. By using Eq. (9) and Eq. (10)
we can calculate the dispersion and dispersion slope factors illustrated
in Fig. 3 and 4. It is shown that dispersion flattened profile can be
obtained for both RI- and RII-type fibers. Also, the case is better for
RI- than RII-type structures. For dispersion slope the case is same
too.

Table 1. The optical and geometrical parameters resulted by running
DE in the wavelength range of [1.5–1.6] um.

parameters RI RII

a (e-6) 2.5062105 2.6059178

P = b/c 0.6460655 0.6837144

Q = a/c 0.4083225 0.3729432

R1 3.2018295 1.6854434

R2 0.8493893 −0.0757139

∆ (e-3) 3.3335338 3.001958

As we see in Fig. 3 the amount of Dispersion for the RII
structure, in the range of wavelengths [1.5–1.6] um changes from
−1.388 (Ps/km/nm) to 0.064 (Ps/km/nm). Also the maximum amount
of dispersion in the RI structure is −0.2058 (Ps/km/nm) in the
wavelength of 1.5 um and the amount of dispersion at 1.6 um is
−0.02788 (Ps/km/nm). So, we can obtain small dispersion in the
whole duration [1.5–1.6] um. Some important features of the dispersion
profile are extracted and shown in Table 2. As it is shown in Fig. 3,
we have some wavelengths that have zero dispersion which are named
these zero dispersion wavelengths. Here, we introduce bandwidth as
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Figure 3. Dispersion vs. wavelength for parameters presented in
Table 1.

distance between first and last zero dispersion points.
In Fig. 4 dispersion slope versus wavelength is illustrated for RI-

and RII-type fibers. It is shown that for given wavelength duration
dispersion slope for RII-type is smaller than RI-type.

Another important parameter in fiber optic which is named
dispersion length is shown in Fig. 5 for both introduced fiber structures.
It is observed that the dispersion length for RII-type fiber is so larger
than the RI-type fiber.

By increasing the wavelength region into [1.3–1.8] um and applying
DE algorithm considering results of pervious step as initial population,
we obtain optical and geometrical parameters that are shown in
Table 3. The calculated dispersion and dispersion slope curves are
shown in Fig. 6 and in Fig. 7. The dispersion length factor is shown
in Fig. 8 also.

As we see in Fig. 5 the amount of Dispersion for the RI

Table 2. Important specifications of the dispersion curves in Fig. 3.

Type of

structure

Number of zero

dispersion points

Max amount

of dispersion

between zeros

Bandwidth

(um)

RI 2 0.029 102

RII 3 0.034 82
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Figure 4. The dispersion slope curves of the resulted parameters in
Table 1.
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Figure 5. Dispersion length versus the obtained parameter in Table 1.

structure, in the range of wavelengths [1.5–1.6] um changes from
−5.821 (Ps/km/nm) to 0.881 (Ps/km/nm) and for RII structure
changes from −7.7 (Ps/km/nm) to 3.951 (Ps/km/nm). The important
specifications of dispersion curves in Fig. 6 are shown in Table 4. As
we see here by increasing the region of optimization we can increase
bandwidth instead of increasing the amount of dispersion in that
bandwidth. Here for the RI fibers we obtained the bandwidth of
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Table 3. The optical and geometrical parameters resulted by running
DE in the wavelength range of [1.3–1.8] um.

parameters RI RII

a (e-6) 2.7739835 2.2082040

P = b/c 0.67912806 0.7697095

Q = a/c 0.52502227 0.3734449

R1 3.4064929 2.3568334

R2 0.9635842 −0.05302923

∆ (e-3) 5.3887532 3.6657646
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Figure 6. The dispersion curves of the resulted parameters in Table 3.

363 nm with maximum dispersion of 0.7219 (Ps/km/nm), notice that
this amount is a very low dispersion for that obtained broad bandwidth,
and for the RII fibers we obtained 363 nm bandwidth with maximum
dispersion of 1.345 (Ps/km/nm) in that duration. Obtaining zero
dispersion slopes in large wavelength duration that is very important
factor for optical communication systems and is our main purpose
which is illustrated in Fig. 7, especially for RI type fiber.

In another step according to the achieved results of previous steps,
we increase the wavelength region of optimization to obtain large
bandwidth. In this step, we set the region of optimization to [1.1–
2] um, and run the DE algorithm with obtained results of pervious
steps as initial population. The output results of DE are shown in
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Figure 7. Dispersion slope vs. wavelength for parameters given in
Table 3.

Table 5. Also, dispersion length is illustrated in Fig. 8. In this case
also, the dispersion length for RI-type is smaller than RII-type case.

The calculated dispersion and dispersion slope with considering
the parameters given in Table 5 are shown in Fig. 9 and Fig. 10. As
we see in Fig. 9 the dispersion of optimized RI fiber changes from
−22.5 (Ps/km/nm) to 4 (Ps/km/nm) in the wavelength duration of
[1.1–2] um. The important factors of the illustrated dispersion factor
is extracted and shown in Table 6.

Also, dispersion length is illustrated in Fig. 11. The achieved
bandwidth in this step (running DE in the wavelengths of [1.1–2 um]
with supposed cost function), for the RI fiber is about 600 nm with
the maximum dispersion of 1.367 (Ps/km/nm), and for the RII fiber
is about 620 nm with the maximum dispersion of 3.293 (Ps/km/nm)
in that duration. The dispersion lengths of these fibers are shown in
Fig. 11.

Table 4. Important specifications of the dispersion curves in Fig. 6.

Type of

structure

Number of zero

dispersion points

Max amount

of dispersion

between zeros

Bandwidth

(nm)

RI 3 0.7219 363

RII 3 1.345 363
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Figure 8. Dispersion length vs. wavelength for parameter given in
Table 3.

To compare the difference between DE algorithm and other
algorithms such as genetic algorithm, we execute both algorithms in
same conditions, (same initial population, same amount of population
size, number of population, crossover and extra), and show the resulted
dispersion curve in Fig. 12.

As it is observed in Fig. 12, the achieved dispersion curve using DE
algorithm is so better than the other achieved from GA. The amount
of dispersion for the DE result changes from [−5.821 0.88] (Ps/km/nm)
whereas for the DE result changes from [−6.532 15.3] (Ps/km/nm) in

Table 5. The optical and geometrical parameters resulted by running
DE in the wavelength range of [1.1–2] um.

parameters RI RII

a (e-6) 2.5694698 2.4904958

P = b/c 0.7638290 0.8957018

Q = a/c 0.5962377 0.3954816

R1 3.8535700 1.1701676

R2 0.8553986 −0.7135836

∆ (e-3) 8.5923193 8.7786587
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Figure 9. The dispersion curves of the resulted parameters in Table 5.
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Figure 10. The dispersion slope curves of the resulted parameters in
Table 5.

Table 6. Important specifications of the dispersion curves in Fig. 9.

Type of

structure

Number of zero

dispersion

points

Max amount

of dispersion

between zeros

Bandwidth

(um)

RI 3 1.367 601

RII 2 3.293 622
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Figure 11. Dispersion length versus the obtained parameter in
Table 5.
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Figure 12. Comparison between dispersion curves resulted by running
DE and GA.

the [1.3–1.8 um] wavelength duration. The dispersion curve of the DE
is completely flattened in the optimization wavelength duration and the
obtained bandwidth is about 360 nm whereas the obtained bandwidth
of another one is about 100 nm.

This study provides not only broad band uniform dispersion curve,
new type of dispersion-flattened fibers, but also new basic principle
for design of desired dispersion curve by selecting the suitable GA
and DE. For instance here is a study of obtaining the dispersion
shifted fiber. In the dispersion shifted fibers we can set the zero
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Figure 13. Dispersion length versus the obtained parameter in
Table 7.

dispersion point to arbitrary wavelength. To obtain this purpose,
we selected absolute dispersion in that wavelength as cost function
and run the sufficient DE algorithm. In this simulation we like shift
zero dispersion wavelength to 1.55 um which is interesting for optical
communication. The output results of DE are given in Table 7, and the
related dispersion curve is illustrated in Fig. 13. As we see in Fig. 13
the zero dispersion point is successfully shifted to 1.55 um and also the
amounts of dispersion around this wavelength are equal with opposite
signs (dispersion in 1.5 um is about −1.25 ps/km/nm and in 1.6 um is
about +1.25 ps/km/nm).

For compare of other presented methods with DE approach, it is

Table 7. The optical and geometrical parameters resulted by running
DE with absolute dispersion at 1.55 um as cost function.

parameters RI

a, the radius of fist layer 2.6521187e-6

P = b/c 0.5640656

Q = a/c 0.4686066

R1 3.2062703

R2 1.3862477

∆ (e-3) 4.8630771
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Figure 14. Compare between the dispersion curves of the best
pervious method and the novel presented method.
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Figure 15. Compare between the dispersion slope curves of the best
pervious method and the novel presented method.

necessary to compare the results obtained in this paper with the best
reported results given in [8]. In that paper optimization is based on
the weighted fitness function that is applied to genetic algorithm and
the selected structures are MII type fibers. We do optimization using
DE method and illustrate dispersion curve with pervious dispersion
curve in Fig. 14.

The reported dispersion values for the pervious method is
changed from −25 to 15 (Ps/km/nm), whereas for the novel method
presented in this paper is changed from −6 to 0.2 and from
0.2 to −2 (Ps/km/nm), in the wavelength duration of [1.2–1.8] um.
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Figure 16. Compare between the dispersion lengths of the best
pervious method and the novel presented method.

The dispersion slope for both methods is shown in Fig. 15. As
we see, the maximum amount of dispersion slope for the first
case is 0.1 (Ps/km/nm2), whereas for the DE method is about
0.05 (Ps/km/nm2).

The dispersion length is also calculated and illustrated in Fig. 16.
The pervious method predicts one peak in the dispersion length curve
and it is about 1270 km, whereas the situation for DE method is
different and has two peaks around 35600 km and 12200 km.

In this section different aspects of single mode triple clad optical
fiber design has been considered and evaluated. It was shown that the
proposed DE method is efficient for fiber design.

5. CONCLUSION

In this paper single mode triple clad optical fiber design for dispersion
flattened purpose has been studied. It is shown that DE optimization
method is better than GA in this case. Also, we have been shown that
600 nm flat band in these structures can be obtained.
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