Vol. 75
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-14
A Principal Investigation of the Group Velocity Dispersion (GVD) Profile for Optimum Dispersion Compensation in Optical Fibers: a Theoretical Study
By
Progress In Electromagnetics Research, Vol. 75, 209-224, 2007
Abstract
In this paper, an analytical method for management of optimum group velocity dispersion (GVD) for compensation of chromatic dispersion in optical fibers is proposed. The proposed method mathematically is based on the Volterra series as alternative method for solution of the nonlinear Schrödinger equation (NLS). Based on analytical solution of the nonlinear equation in pulse propagation, we propose a differential equation including optimum GVD for complete dispersion compensation for given dispersion coefficient and fiber length. The obtained integro-differential equation is solved for special cases and it is shown that the obtained results are so better than traditional dispersion compensation cases. Also, the proposed technique can be applied to fiber design to introduce an especial GVD profile for dispersion less transmission.
Citation
Ali Rostami, and Ghassem Rostami, "A Principal Investigation of the Group Velocity Dispersion (GVD) Profile for Optimum Dispersion Compensation in Optical Fibers: a Theoretical Study," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402
References

1. Agrawal, G. P., Fiber Optic Communication Systems, 3rd edition, 2002.

2. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702

3. Wedding, B., B. Franz, and B. Junginger, "10-Gb/s optical transmission up to 253km via standard single mode fiber using the method of dispersion supported transmission," Journal of Lightwave Technology, Vol. 12, 1720-1727, 1994.
doi:10.1109/50.337483

4. Perlicki, K. and J. Siuzdak, "Dispersion supported transmission with a binary optical signal at the receiver," Opt. Quantum Electronics, Vol. 31, 243-247, 1999.
doi:10.1023/A:1006909226999

5. Morgado, J. A. V. and A. V. T. Cartaxo, "Optimized filtering for AMI-RZ and DCS-RZ SSB signals in 40-Gb/s/ch based UDWDM systems," IEEE Photonics Technology Letters, Vol. 17, No. 1, 223-225, 2005.
doi:10.1109/LPT.2004.838282

6. Agrawal, G. P. and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers," Opt. Lett., Vol. 14, 500-502, 1989.

7. Agrawal, G. P. and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electronics, Vol. 25, 2297-2306, 1989.
doi:10.1109/3.42059

8. Antos, A. J. and D. K. Smith, "Design and characterization of dispersion compensating fiber based on the LP01 mode," J. Lightwave Technology, Vol. 12, 1739-1745, 1994.
doi:10.1109/50.337485

9. Onishi, M., T. Kashiwada, Y. Ishiguro, Y. Koyano, M. Nishimura, and H. Kanamori, "High performance dispersion compensating fibers," Fiber Integrated Optics, Vol. 16, 277-285, 1997.
doi:10.1080/01468039708221269

10. Liu, J., Y. L. Lam, Y. C. Chan, Y. Zhou, B. S. Ooi, G. Tan, and J. Yao, "Embossed Bragg gratings based on organically modified silane waveguides in InP," Appl. Opt., Vol. 39, 4942-4945, 2000.

11. Gruner-Nielsen, L., S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Optical Fiber Technology, Vol. 6, 164-180, 2000.
doi:10.1006/ofte.1999.0324

12. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

13. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406

14. Biswas, A., "Dynamics of Gaussian and super-Gaussian solitons in birefringent optical fibers," Progress In Electromagnetics Research, Vol. 33, 119-139, 2001.
doi:10.2528/PIER00101203

15. Grobe, K. and H. Braunisch, "A broadband model for single-mode fibers including nonlinear dispersion," Progress In Electromagnetics Research, Vol. 22, 131-148, 1999.
doi:10.2528/PIER98090301

16. Oullette, F., "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Optics Letters, Vol. 12, 847-849, 1987.

17. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702

18. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

19. Yariv, A., D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Optics Letters, Vol. 4, 52-54, 1979.

20. Kartalopoulos, S. V., DWDM Networks, Devices and Technology, 2003.

21. Xu, B. and M. Brandt-Pearce, "Comparison of FWM and XPM induced crosstalk using Volterra series transfer function method," Journal of Lightwave Technology, Vol. 21, No. 1, 40-53, 2003.
doi:10.1109/JLT.2002.806360

22. Xu, B. and M. Brandt-Pearce, "Modified Volterra series transfer function method," IEEE Photon. Technology Lett., 47-49, 2002.

23. Peddanarappagari, K. V. and M. Brandt-Pearce, "Volterra series transfer function of single-mode fibers," Journal of Lightwave Technology, Vol. 15, No. 12, 2232-2241, 1997.
doi:10.1109/50.643545

24. Peddanarappagari, K. V. and M. Brandt-Pearce, "Volterra series approach for optimizing fiber-optic communication system designs," Journal of Lightwave Technology, Vol. 16, No. 11, 2046-2055, 1998.
doi:10.1109/50.730369

25. Francois, P. L., "Nonlinear propagation of ultra short pulses in optical fibers: total field formulation in the frequency domain," Journal of Optical Society of America, Vol. 8, No. 2, 276-293, 1991.

26. Rugh, W. J., Nonlinear Systems Theory the Volterra/Wiener Approach, The John Hopkins University Press, 2001.

27. Peddanarappagari, K. V., "Design and analysis of digital directdetection fiber-optic communication systems using Volterra series approach,", No. 10, 1997.

28. Gabitov, I. R. and S. K. Turitsyn, "Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation," Optics Letters, Vol. 21, No. 5, 327-329, 1996.

29. Ablowitz, M. J. and G. Biondini, "Multiscale pulse dynamics in communication systems with strong dispersion-management," Optics Letters, Vol. 23, No. 21, 1668-1670, 1998.
doi:10.1142/S0218863503001195

30. Biswas, A., "Gabitov-Turitsyn equation for solitons in optical fibers," Journal of Nonlinear Optical Physics and Applications, Vol. 12, No. 1, 17-37, 2003.
doi:10.1016/j.ijleo.2006.01.010

31. Biswas, A., "Higher-order Gabitov-Turitsyn equation for solitons in optical fibers," Optik-International Journal for Light and Electron. Optics, Vol. 118, No. 3, 120-133, 2007.