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Abstract—In this paper, an analytical method for management
of optimum group velocity dispersion (GVD) for compensation of
chromatic dispersion in optical fibers is proposed. The proposed
method mathematically is based on the Volterra series as alternative
method for solution of the nonlinear Schrödinger equation (NLS).
Based on analytical solution of the nonlinear equation in pulse
propagation, we propose a differential equation including optimum
GVD for complete dispersion compensation for given dispersion
coefficient and fiber length. The obtained integro-differential equation
is solved for special cases and it is shown that the obtained results
are so better than traditional dispersion compensation cases. Also,
the proposed technique can be applied to fiber design to introduce an
especial GVD profile for dispersion less transmission.

1. INTRODUCTION

Optical fiber is physical medium for realization of optical communi-
cation algorithms which is one of acceptable and interesting methods
recently for data communications. There are two main problems in
this physical medium that are dispersion and power loss. Selection of
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suitable carrier wavelength such as 1.55 um corresponding to minimum
loss of common optical fibers really can be removed the loss problem
of this physical medium for light propagation. Also, Erbium doped
fiber amplifiers (EDFA) which are completely compatible with fibers
can be used to compensate optical loss through propagation. The sec-
ond and important problem is dispersion effect. Complete solution for
this problem doesn’t exist. There are huge proposals for dispersion
compensation which in the following we review some of them briefly
and discuss advantages and disadvantages.

Pre-chirping is one of common methods for dispersion compensa-
tion [1, 2]. Minus chirping in the case of positive GVD introduces pulse
compression and can be used as dispersion compensator which is try
to broad optical pulse. Digital modulation such as frequency shifted
keying (FSK) is another method for dispersion compensation [3–5].
Nonlinear pre-chirping is another method for dispersion compensation
[6, 7]. In this method semiconductor optical amplifier is used in the
saturation region. Also, some post dispersion compensation methods
were used. One of common method in this category is dispersion com-
pensating fibers [8–11]. In this method fiber with negative dispersion
in given wavelength which basic fibers have positive values is used to
compensate pulse broadening.

Optical fibers with given phase dependency on frequency is
another method for dispersion compensation of optical fibers [1, 12, 15].
Fiber Bragg Grating is another method for dispersion compensating
in optical fibers [16–18]. Using the parameters used in Bragg grating
frequency response of this structure can be managed and dispersion
compensation can be done. Optical phase conjugation can be used
for dispersion compensation also [19]. Finally a more common
method named dispersion management technique is used for dispersion
compensation [1, 20]. In this method periodic function for GVD is
used to overcome to overall dispersion induced through propagation.
Since light propagation through optical fibers using some acceptable
approximations governed by Nonlinear Schrödinger equation (NLS).
This equation is nonlinear and analytical solution is hard to obtain.
Analytical solutions are so excellent to show nature of phenomenon in
propagation. For handling of NLS equation in the past the Volterra
series was used [21–27]. Since two or three terms of this series
completely describe light propagation and show some of important
phenomenon in fibers, we concentrate on this method for analytical
solution.

As it discussed in the presented methods for dispersion
compensation in optical fibers the question “what is optimum
dispersion group velocity dispersion?” doesn’t addresses truly. At least
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we don’t find anything about what is differential equation addressing
optimum group velocity dispersion?

For presentation a suitable and mathematical framework in this
paper we concentrate on this subject. On the other hand we like,
develop a novel mathematical method managing complete dispersion
compensation and optimum group velocity dispersion in optical fibers.
For this purpose analytical solution of NLS equation in frequency
domain is considered. For this task the Volterra series is used. After
determination of the Volterra Kernels we apply similarity principle
of the output and input signal pulses. The result is an integro-
differential equation managing optimum GVD profile. Finally solution
of the obtained equation can be considered as optimum profile for
dispersion compensation. Then for evaluating of obtained result the
optimum GVD profile is applied to the fiber and using split step Fourier
method light propagation is studied. Our simulated results show that
dispersion compensation in the case of GVD profile obtained from
the proposed method is so better than other cases presented in the
literature. We compared our proposal with some of previous presented
cases.

Organization of the paper is as follows.
Mathematical background is presented in Section 2. Simulated

results and discussion is considered in Section 3. Finally the paper
ends with a short conclusion.

2. MATHEMATICAL BACKGROUND

In this section mathematical basis for developing a differential equation
for optimum GVD in optical fibers is presented. For this purpose, we
start from the nonlinear Schrödinger equation in frequency domain
with assuming β1 = β3 = 0 [15, 16]. Then using the Volterra series the
solution of NLS equation is expressed in terms of the Volterra Kernels
[17–21]. After substituting these functions into the NLS equation we
obtain the first order differential equation, which is important and
can be solved at least numerically. In this work, we only consider
two kernels (First and Third orders). Using traditional techniques
for solution of first order differential equations and similarity between
initial and final wave shapes (A(ω, z) = k(z)A(ω)), we obtain an
integro-differential equation where optimum GVD is main variable
which should be determined. For doing this algorithm the following
mathematical formalism are used.
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∂A(ω, z)
∂z

= G1(ω)A(ω, z)

+
+∞∫

−∞

+∞∫
−∞

G3(ω1, ω2, ω−ω1+ω2)A(ω1, z)A∗(ω2, z)A(ω−ω1+ω2, z)dω1dω2,

(1)

where
A(ω, z), G1(ω) = −α0

2
+ j

β2

2
ω2

and

G3(ω1, ω2, ω − ω1 + ω2) = j

(
1 +

ω

ω0

)
[a0 + QRSR(ω1 − ω2)]

are slowly varying complex envelope of the optical field, the linear
dispersion kernel and the fiber nonlinear kernel respectively [3–6].

It should mention that Eq. (1) can be used in propagation of
solitons through optical fibers which has been a major area of research
given its potential applicability in all optical communication systems
and named Gabitov-Turitsyn equation (GTE) [28–31]. The GTE
extensively studied in the past and has ultra high important in high-
speed communications.

Now based on Eq. (1), we let the second order dispersion (GVD)
depends on distance.

Based on the Volterra series [8] that is used for analysis of
nonlinear systems the following solution for Eq. (1) can be considered
[3–6].

A(ω, z) = H1(ω, z)A(ω)

+
+∞∫

−∞

+∞∫
−∞

H3(ω1, ω2, ω−ω1+ω2, z)A(ω1)A∗(ω2)A(ω−ω1+ω2)dω1dω2,

(2)

where H1 and H3 are the linear and third order nonlinear transfer
functions (Volterra kernels) respectively. After substituting the
proposed solution into Eq. (1), the following differential equations for
H1 and H3 are obtained.

dH1(ω, z)
dz

−
[
−α0

2
+ j

ω2

2
β2(z)

]
H1(ω, z) = 0 (3)
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dH3

dz
(ω1, ω2, ω − ω1 + ω2, z) −

[
−α0

2
+ j

ω2

2
β2(z)

]

×H3(ω1, ω2, ω − ω1 + ω2, z) = G3(ω1, ω2, ω − ω1 + ω2)

× exp
[
−3α0

2
z +

j

2

(
ω2

1 − ω2
2 + (ω − ω1 + ω2)2

∫
β2(z)dz

])
(4)

With considering techniques used in first order linear differential
equations such as applying the suitable integrating factor given in the
following the Volterra kernels can be obtained.

λ = exp

[∫
−

(
−α0

2
+ j

ω2

2
β2(z)

)
dz

]
= exp

[
α0

2
z − j

ω2

2

∫
β2(z)dz

]
,

(5)
Considering Eq. (5) and boundary condition H1(ω, 0) = 1 the following
solution is extracted.

H1(ω, z) = exp

[
−α0

2
z + j

ω2

2

∫
β2(z)dz

]
(6)

It should be mentioned that from the mentioned boundary condition
the following result is obtained.∫

β2(z)dz
∣∣∣
z=0

= 0

Also, the following solution is given for the third order nonlinear
transfer function.

H3(ω1, ω2, ω − ω1 + ω2, z) = exp

[
−α0

2
z + j

ω2

2

∫
β2(z)dz

]

× [G3(ω1, ω2, ω − ω1 + ω2)∫
exp

[
−α0z+j

(
ω2

1−ω(ω1−ω2) − ω1ω2

) ∫
β2(z)dz

]
dz+c

]

where C = 0 is direct conclusion of the following boundary condition.

H3(ω1, ω2, ω − ω1 − ω2, 0) = 0

In the following, optimum GVD for undistorted pulse propagation
inside optical fiber based on the developed mathematical relation is
proposed. For this purpose, we assume that the field spectrum after
propagation to desired distance z should be proportional to the case
at z = 0. On the other hand we have

A(ω, z) = k(z)A(ω). (7)
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It should be mentioned that k(z) is attenuation coefficient in the
propagation process. Traditionally it is exponential decay with
absorption coefficient at carrier wavelength. Now, with substituting
Eq. (7) into Eq. (2), we have

k(z)A(ω) = H1(ω, z)A(ω)

+
+∞∫

−∞

+∞∫
−∞

H3(ω1, ω2, ω−ω1+ω2, z)A(ω1)A∗(ω2)A(ω−ω1+ω2)dω1dω2,

Now with some mathematical simplification and ignoring from the
Raman effect (Eq. (8)) [8], the following integro-differential equation
managing the GVD is obtained (Eq. (9)).

G3(ω1, ω2, ω−ω1+ω2) = G3(ω) =
[
1 +

ω

ω0

]
a0, (8)

where a0 is the Kerr coefficient.

+∞∫
−∞

+∞∫
−∞

[
G3(ω) exp

[
j

(
ω2

1−ω(ω1−ω2) − ω1ω2

) ∫
β2(z)dz

]]

×A(ω1)A∗(ω2)A(ω−ω1+ω2)dω1dω2 = exp(α0z)
d

dz

[
k(z)

H1(ω, z)

]
A(ω) (9)

Eq. (9) is main result of this section and using the input field
spectrum, fiber and attenuation parameters, the optimum GVD can
be determined. In the following we consider an example.

Example: As an example, we consider the following Gaussian profile
for input pulse.

A(ω) = A0e

[
(ω−ω0)2

2σ2

]
(10)

So, for calculation of the appeared terms in Eq. (9), we have

A(ω1)A∗(ω2)A(ω − ω1 + ω2) =

A3
0e

(
3ω2

0−2ωω0+ω2

2σ2

)
e

(
−ω2

1+ω2
2−ω(ω1−ω2)−ω1ω2−2ω0ω2

σ2

)
. (11)

Now, with substituting of Eqs. (10), (11) into Eq. (9), we obtain the
following final equation.

e(α0z)A0e

[
(ω−ω0)2

2σ2

]
d

dz

[
k(z)

H1(ω, z)

]
= A3

0G3(ω)e

(
3ω2

0−2ωω0+ω2

2σ2

)
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×
+∞∫
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e
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]
×e[j(ω

2
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∫
β2(z)dz]dω1dω2

(12)

Finally, using some mathematical manipulation, we obtain the
following result.

e(α0z)e

[
ω2
0

2σ2

]
d

dz

[
k(z)

H1(ω, z)

]
= A2

0G3(ω)

×
+∞∫

−∞

+∞∫
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e

[
−

ω2
1+ω2

2−ω(ω1−ω2)−ω1ω2−2ω0ω2−jσ2(ω2
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∫
β2(z)dz

σ2

]
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(13)

For solving Eq. (13) the following relation is used.
+∞∫

−∞
exp

[
−ax2 + bx

c

]
dx =

√
πc

a
exp

(
b2

4ac

)
,

(
a

c
> 0

)
(14)

After sufficient mathematical manipulation the following final form of
the proposed integro-differential equation is obtained.

2πσ2A2
0G3(ω)√

σ4

(∫
β2(z)dz

)2

− j6σ2

∫
β2(z)dz + 3

×e

[
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∫

β2(z)dz)3
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]

=

{
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[
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2
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ω2
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]}
× e

[
ω2
0
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2
α0z−j ω2

2
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]
, (15)

where a1 = (80ω2 − 32ωω0)σ6, a2 = 16σ8, b1 = (−112ω2 − 64ω2
0 +

224ωω0)σ4, b2 = 80σ6, c1 = [−48ω2 − 128ω2
0 + 224ωω0)σ2, c2 =

144σ4, d1 = 16ω2 + 64ω2
0 − 32ωω0 and d2 = −48σ2.

With considering B(z) =∆
∫

β2(z)dz, we have

2πσ2A2
0G3(ω)√

σ4B2(z) − j6σ2B(z) + 3
× e

[
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[
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α0

2
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2
dB(z)

dz
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× e
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ω2
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2
α0z−j ω2

2
B(z)

]
(16)
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As an especial case, if we assume that k(z) = exp
(
−α0

2 z
)
, the final

differential equation is obtained as follows.

dB(z)
dz

= − 2
ω2

Im

{
2πσ2A2

0G3(ω)√
σ4B2(z) − j6σ2B(z) + 3

×e

[
− ja1B3(z)j+b1B2(z)+jc1B(z)j+d1

ja2B3(z)j+b2B2(z)+jc2B(z)j+d2
−ω2

0
σ2 −α0z+j ω2

2
B(z)

]
 (17)

It should be mentioned that Eq. (17) must satisfy the following
condition.

B(0) = 0

3. SIMULATION RESULTS AND DISCUSSION

The proposed differential equation in previous section is stiff type
and analytical solution is so hard and also numerical evaluation needs
carefully investigations. For extraction of the GVD parameter versus
distance, we solve numerically Eq. (17) with the following parameters
as an example.

ω0

2π
= 193.54 THz,

ω

2π
= 195 THz, σ = 1012, A2

0 = 2 mW

a0 = 0.00117049
1

W − Km
, α0 = 0.2 dB/km, L = 100 Km

Now, using numerical investigation of Eq. (17), desired profile of GVD
is obtained and the simulated result is illustrated in the following
figures. We find out that damped triangular profile of GVD is one
of acceptable solutions of developed differential equation in previous
section for optimum group velocity dispersion (Eq. (17)).

Now in the following based on obtained GVD in Fig. 1,
different optical pulse propagation through this medium is investigated.
Fig. 2 shows super Gaussian incident pulse through optical fibers
compensated with uniform triangular GVD profile (Output Pulse
1) and damped triangular GVD profile (Output Pulse 2). Also,
for illustration of the difference between these two methods of
compensation, Fig. 3 shows precisely top of these pulses in detail. It is
shown that dispersion compensating using GVD profile of our proposed
equation is so better than uniform triangular GVD profile.

Similar simulation corresponds to the Gaussian and Sech
distributions are illustrated in Figs. 4 and 5.

Also, in other set of simulations (Figs. 6–9) we compare
different distribution field propagation through fibers compensated
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with rectangular (label: with compensation) and damped triangular
(label: M. compensation) GVD profiles. Also, it is observed that GVD
profile obtained from the proposed differential equation is successful
than other profiles.

In this section some simulated results based on obtained
differential equations and numerical analysis of pulse propagation
through optical fibers were presented and compared together. It was
shown that the proposed optimum differential equation for GVD is so
powerful method for compensation.

4. CONCLUSION

In this paper we have derived an integro-differential equation managing
optimum group velocity dispersion. We have simulated the proposed
GVD profile and compared with traditional GVD profiles for dispersion
compensation. We have observed that the GVD profile obtained from
the proposed differential equation is operated so better than traditional
cases. We think that the proposed method for dispersion compensation
will open a new insight in the field of dispersion compensation.
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