Vol. 74
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-22
Transient Solutions of Maxwell's Equations Based on Sumudu Transform
By
, Vol. 74, 273-289, 2007
Abstract
The Sumudu transform is derived from the classical Fourier integral. Based on the mathematical simplicity of the Sumudu transform and its fundamental properties, Maxwell's equations are solved for transient electromagnetic waves propagating in lossy conducting media. The Sumudu transform of Maxwell's differential equations yields a solution directly in the time domain, which neutralizes the need to perform inverse Sumudu transform. Two sets of computer plots are generated for the solution of Maxwell's equations for transient electric field strength in lossy medium. A set of plots presents the Sumudu transform of the transient solution and another one presents inverse Sumudu transform. Both sets of plots reveal similar characteristics and convey equal information. Such property is referred to as the Sumudu reciprocity.
Citation
Malek G. Hussain, and Fethi Bin Muhammad Belgacern, "Transient Solutions of Maxwell's Equations Based on Sumudu Transform," , Vol. 74, 273-289, 2007.
doi:10.2528/PIER07050904
References

1. Watugala, G. K., "Sumudu transform—an integral transform to solve differential equations and control engineering problems," Inter. J. Math. Ed. Sci. Tech., Vol. 24, 35-42, 1993.
doi:10.1080/0020739930240105

2. Watugala, G. K., "Sumudu transform a new integral transform to solve differential equations and control engineering problems," Mathematical Engineering in Industry, Vol. 6, No. 4, 319-329, 1998.

3. Belgacem, F. B. M., "Applications of the Sumudu transform to Indefinite Periodic Parabolic Equations," Proceedings of the International Conference on Nonlinear Problems and Aerospace Applications, 1-10, 2007.

4. Belgacem, F. B. M., "Introducing and analysing deeper Sumudu properties," Nonlinear Studies Journal, Vol. 13, No. 1, 23-41, 2006.

5. Belgacem, F. B. M. and A. A. Karaballi, "Sumudu transform fundamental properties investigations and applications," Journal of Applied Mathematics and Stochastic Analysis, 1-23, 2006.
doi:10.1155/JAMSA/2006/91083

6. Belgacem, F. B. M., A. A Karaballi, and L. S. Kalla, "Analytical investigations of the Sumudu transform, and applications to integral production equations," Mathematical Problems in Engineering, No. 3, 103-118, 2003.
doi:10.1155/S1024123X03207018

7. Asiru, M. A., "Sumudu transform and solution of integral equations of convolution type," Internat. J. Educ. Sci. Technol, Vol. 32, No. 6, 906-910, 2001.
doi:10.1080/002073901317147870

8. Asiru, M. A., "Further properties of the Sumudu transform and its applications," Inter. J. Math. Ed. Sci. Tech., Vol. 33, No. 2, 441-449, 2002.
doi:10.1080/002073902760047940

9. Asiru, M. A., "Applications of the Sumudu transform to discrete dynamicsystem," Inter. J. Math. Ed. Sci. Tech., Vol. 34, No. 6, 944-949, 2003.
doi:10.1080/00207390310001615499

10. Weerakoon, S., "Application of Sumudu transform to partial differential equations," Inter. J. Math. Ed. Sci. Tech., Vol. 25, No. 2, 277-283, 1994.
doi:10.1080/0020739940250214

11. Weerakoon, S., "Complex inversion formula for Sumudu transform," Inter. J. Math. Ed. Sci. Tech., Vol. 29, No. 4, 618-621, 1998.

12. Stratton, J. A., Electomagnetic Theory, McGraw-Hill Book Company, 1941.

13. Kong, J. A., Maxwell Equations, EMW Publishing, 2002.

14. Harmuth, H. F. and M. G. M. Hussain, Propagation of Electromagnetic Signals, World Scientific, 1994.

15. Zhou, X., "On independence, completeness of Maxwell's equations and uniqueness theorems in electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302

16. Hussain, M. G. M., "Mathematical model for the electromagnetic conductivity of lossy materials," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 2, 271-279, 2005.
doi:10.1163/1569393054497311

17. Shen, J., "Time harmonic electromagnetic fields in an biaxial anisotropic medium," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 6, 753-767, 2005.
doi:10.1163/1569393054069082

18. El-Shandwily, M. E., "Solutions of Maxwell's equations for general nonperiodic waves in lossy media," IEEE Trans. Electromagn. Compat., Vol. 30, No. 4, 577-582, 1988.
doi:10.1109/15.8774

19. Thomson, W. T., Laplace Transformation Theory and Engineering Applications, Prentice-Hall Engineering Design Series, 1950.

20. Watugala, G. K., "Sumudu transform for functions of two variables," Mathematical Engineering in Industry, Vol. 8, No. 4, 293-302, 2002.