Vol. 72
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-22
Angular-Diversity Radar Recognition of Ships by Transformation Based Approaches --- Including Noise Effects
By
Progress In Electromagnetics Research, Vol. 72, 145-158, 2007
Abstract
In this paper, the angular-diversity radar recognition of ships is given by transformation based approaches with noise effects taken into consideration. The ships and sea roughness are considered by simplified models in the simulation. The goal is to identify the similarity between the unknown target ship and known ships. Initially, the angular-diversity radar cross sections (RCS) from a ship are collected to constitute RCS vectors (usually largedimensional). These RCS vectors are projected into the eigenspace (usually small-dimensional) and radar recognition is then performed on the eigenspace. Numerical examples show that high recognition rate can be obtained by the proposed schemes. The radar recognition of ships in this study is straightforward and efficient. Therefore, it can be applied to many other radar applications.
Citation
Kun-Chou Lee, Jhih-Sian Ou, and Chih-Wei Huang, "Angular-Diversity Radar Recognition of Ships by Transformation Based Approaches --- Including Noise Effects," Progress In Electromagnetics Research, Vol. 72, 145-158, 2007.
doi:10.2528/PIER07030901
References

1. Hajduch, G., J. M. Le Caillec, and R. Garello, "Airborne high-resolution ISAR imaging of ship targets at sea," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 1, 378-384, 2004.
doi:10.1109/TAES.2004.1292177

2. Tello, M., C. Lopez-Martinez, and J. J. Mallorqui, "A novel algorithm for ship detection in SAR imagery based on the wavelet transform," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 201-205, 2005.
doi:10.1109/LGRS.2005.845033

3. Farhat, N. H., "Microwave diversity imaging and automated target identification based on models of neural networks," IEEE Proceedings, Vol. 77, No. 5, 670-681, 1989.

4. Lee, K. C., Polarization Effects on Bistatic Microwave Imaging of Perfectly Conducting Cylinders, Master thesis, 1991.

5. Moon, T. K. and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000.

6. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition, 2001.

7. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, 2nd edition, 2003.

8. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Vol. 1, 1970.

9. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of svm-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

10. Azaro, R., A. Casagranda, D. Franceschini, and A. Massa, "An innovative fuzzy-logic-based strategy for an effective exploitation of noisy inverse scattering data," Progress In Electromagnetics Research, Vol. 54, 283-302, 2005.
doi:10.2528/PIER05011802

11. Chiang, C. T. and B. K. Chung, "High resolution 3-D imaging," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 9, 1267-1281, 2005.
doi:10.1163/156939305775526016

12. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

13. Semenov, S. Y., V. G. Posukh, A. E. Bulyshev, T. C. Williams, Y. E. Sizov, P. N. Repin, A. Souvorov, and A. Nazarov, "Microwave tomographic imaging of the heart in intact swine," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 7, 873-890, 2006.
doi:10.1163/156939306776149897

14. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithm combined with FDTD technique," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264