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Abstract—In this paper, the angular-diversity radar recognition
of ships is given by transformation based approaches with noise
effects taken into consideration. The ships and sea roughness are
considered by simplified models in the simulation. The goal is to
identify the similarity between the unknown target ship and known
ships. Initially, the angular-diversity radar cross sections (RCS)
from a ship are collected to constitute RCS vectors (usually large-
dimensional). These RCS vectors are projected into the eigenspace
(usually small-dimensional) and radar recognition is then performed
on the eigenspace. Numerical examples show that high recognition
rate can be obtained by the proposed schemes. The radar recognition
of ships in this study is straightforward and efficient. Therefore, it can
be applied to many other radar applications.

1. INTRODUCTION

Radar recognition of ships plays an important role in coast guard
control, sea rescue, regulation of shipping channels and naval warfare.
In the radar recognition of ships, many existing studies utilize different
approaches to recognize the ship targets by their SAR or ISAR images,
e.g., [1, 2]. This motivates us to develop an alternative approach for
the radar recognition of ships.

In this paper, the angular-diversity radar recognition of ships is
given by transformation based approaches with noise effects taken
into consideration. The ships and sea roughness are considered by
simplified models in the simulation. The goal is to identify the
similarity between the unknown target ship and known ships. The
idea of angular-diversity comes from microwave diversity imaging
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[3, 4]. Initially, the angular-diversity radar cross sections (RCS)
from a ship are collected to constitute RCS vectors (usually large-
dimensional). By changing the elevation angle or the ship type,
different RCS vectors are obtained to produce a high-rank covariance
matrix. The eigenvalues and eigenvectors of the covariance matrix
are solved by the Karhunen-Loève’s low-rank approximation [5]. By
choosing some of the largest eigenvalues and their corresponding
eigenvectors, all the RCS vectors are projected into the eigenspace
(usually small-dimensional). Similarity between the unknown target
ship and known ships can be identified in the eigenspace with high
recognition rate. This will reduce the complexity for radar recognition
of RCS characteristics from ships.

The above transformation mainly comes from the principal
components analysis (PCA) [6, 7]. The PCA is usually exploited in
the fields of digital imaging processing and pattern analysis. In those
fields, the training or testing data of PCA usually represent shapes of
object images. However, the training or testing data of PCA in this
study are the RCS characteristics from ships. To our knowledge, this
is the first study to combine the RCS and PCA in radar recognition of
ships. The radar recognition of ships is performed on the eigenspace.
Numerical examples show that high recognition rate can be obtained
by the proposed schemes. The radar recognition of ships in this study
is straightforward and efficient. Therefore, it can be applied to many
other radar applications.

In Section 2, the theoretical formulations are given. Numerical
simulation results are given in Section 3. Finally, the conclusion is
given in Section 4.

2. FORMULATIONS

Consider a ship on the sea level (X-Y plane) located at the origin of
coordinate, as shown in Figure 1. The front end of ship is in the +x̂
direction and the broadside of ship is in the ±ŷ direction. The spherical
coordinate system is defined as (R, θ, φ) where R is the distance from
observation position to origin, θ is the elevation angle and φ is the
azimuth angle. The ship is illuminated by a plane wave Ei = e+jkxẑ
where k is the wavenumber. The bistatic RCS in the direction of (θ, φ)
is defined as

σ(θ, φ) = lim
R→∞

4πR2

∣∣∣Es(θ, φ)
∣∣∣2∣∣∣Ei

∣∣∣2
. (1)
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Figure 1. Schematic diagram of a ship illuminated by an incident
plane wave.

where Es(θ, φ) is the scattered electric field. The bistatic RCS of a
ship at a fixed elevation angle θ and different azimuth angles of φ
are collected to constitute an RCS vector. Different RCS vectors are
collected and processed by the transformation based approaches. The
flow chart of the transformation based angular-diversity RCS radar
recognition scheme is shown in Figure 2. Each step in Figure 2 is
interpreted in detail as the following.

Step-1: Select training vectors
Assume we have P types of known ships and p = 1, 2, . . . , P denote

the types of ships. As mentioned above, an RCS vector represents the
bistatic RCS for a type of known ship at a fixed elevation angle θ and
N different azimuth angles of φ. This RCS vector is N -dimensional.
By choosing Mp elevation angles for the p-th type of ship, Mp RCS
vectors are obtained to constitute the p-th class of RCS characteristics.

Therefore, we have M =
P∑

p=1
Mp RCS vectors for all the P types of

known ships. These M RCS vectors are denoted as Xi, i = 1, . . . ,M
and serve as the training vectors of our recognition algorithm.
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Step-1: Select training vectors 

Step-2: Compute the mean vector 

Step-3: Compute centered vectors 

Step-4: Compute the covariance matrix 

Step-5: Select the principal components 

Step-6: Compute feature vectors 

Step-7: Compute feature centers of classes 

Step-8: Test the radar target 

Figure 2. Flow chart of the transformation based radar recognition
scheme.

Step-2: Compute the mean vector

The mean vector Ψ of the M training vectors in Step-1 is given as

Ψ =
1
M

M∑
i=1

Xi. (2)

Step-3: Compute centered vectors
Transform the RCS vectors into centered vectors. The centered
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vector Φi for an N -dimensional RCS vector Xi in Step-1 is given as

Φi = Xi − Ψ, i = 1, . . . ,M (3)

Obviously, every centered vector is also N -dimensional.

Step-4: Compute the covariance matrix

The covariance matrix C is defined as

C =
1
M

A ·A
T

(4)

where
A =

(
Φ1, Φ2, · · · , ΦM

)
(5)

and “T” denotes the transpose. The dimension of A is N × M and
thus the dimension of C is N ×N .

The dimension N represents the number of angular diversity in
collecting RCS of a ship and is large in general. Therefore, the
computation for eigenvalues and eigenvectors of the N ×N covariance
matrix C is inefficient due to the large dimension of matrix. Since
only the principal eigenvalues and eigenvectors are required in our
recognition procedures, the Karhunen-Loève’s low-rank approximation
[5] is utilized and is described in the following.

Consider the M ×M matrix L defined as

L =
1
M

A
T
·A (6)

Note that we have M � N in general. The eigenvalues and
eigenvectors of L are easy to obtain. Assume that λi and vi, i =
1, . . . ,M are the eigenvalues and eigenvectors of the M ×M matrix L.
In linear algebra, one can easily prove that λi and A · vi, i=1,. . . , M
are the eigenvalues and eigenvectors of the N ×N matrix C. In other
words, the principal eigenvalues and eigenvectors of the N ×N matrix
C can be obtained by solving the eigenvalues and eigenvectors of the
M ×M matrix L.

Step-5: Select the principal components
We select the M ′ largest eigenvalues (M ′ < M) and the

corresponding eigenvectors of C. The eigenvectors are normalized as

ui = A · vi

/∣∣∣A · vi

∣∣∣ , i = 1, . . . ,M ′. (7)
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The M ′ eigenvalues and their corresponding eigenvectors serve as the
principal components in our radar recognition of ships.

Step-6: Compute feature vectors

For an N -dimensional RCS vector X, it can be projected into
an M ′-dimensional eigenspace spanned by vector bases of (7). The
projection result is an M ′-dimensional feature vector Ω given as

Ω = [ω1 ω2 · · · ωM ′ ]T (8)

where
ωi = uT

i ·
(
X − Ψ

)
, i = 1, . . . ,M ′. (9)

The goal of this step is to reduce the dimension of RCS vectors so that
the radar recognition of ships can be easy and efficient.

Step-7: Compute the feature centers of classes
For the p-th class, the Mp RCS vectors are projected into the M ′-

dimensional eigenspace and then Mp feature vectors are obtained. The
feature center Ωmean

p of the p-th class is defined as the mean vector of
these Mp feature vectors. All the P classes of training vectors in Step-1
are treated and then P feature centers of classes are obtained totally.

Step-8: Test the radar target
For an unknown target ship, its angular-diversity RCS at a fixed

elevation angle θ and different N azimuth angles of φ are collected to
constitute an RCS vector X. This RCS vector X is N -dimensional
and is projected into the M ′-dimensional eigenspace according to (8)
and (9) to produce a feature vector Ω. The distance, i.e., class error,
of this measurement with respect to the p-th class is given by

dp =
∣∣∣Ω − Ωp

∣∣∣ , p = 1, . . . , P. (10)

The magnitude of distance (class error) in (10) is in inverse proportion
to the degree of similarity. The smallest distance (class error) means
that the target ship has the highest degree of similarity with the
corresponding type of ship.

3. NUMERICAL SIMULATION RESULTS

In this section, numerical examples are given to illustrate the above
formulations. To easily obtain the scattering data, simplified ship
models for simulation are utilized instead of real ships. Assume there
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Figure 3. Geometrical models for three known classes of ships: (a)
type I, (b) type II and (c) type III.

are three types of known ships (P = 3) including type I (similar to
container vessel), type II (similar to naval ship) and type III (similar
to fishing boat). The geometrical models for the three types of known
ships are shown in Figure 3. The ship length a is chosen to be ka = 9.4
for the ship of type I, ka = 6.3 for the ship of type II, and ka = 3.1
for the ship of type III. All ships are in rough sea waters (X-Y plane).
The characteristic for surface roughness of sea water is assumed to be

z(x, y) =
4
75

a · sin
(

15π
4

x

)
sin

(
15π
4

y

)
+

8
75

a. (11)

The sea water has dielectric constant εr = 81 and conductivity
σ = 4 S/m. As the arrangement in Figure 1, the bistatic RCS from
each type of known ship at a fixed elevation angle θ and 181 azimuth
angles of φ = 0◦, 1◦, . . . , 180◦ are collected to constitute an RCS vector,
i.e., N = 181. The training vectors of RCS for each type of known ship
are obtained by sampling the elevation angles at θ = 61◦, 63◦,. . . , 89◦.
Therefore, we have M1 = M2 = M3 = 15 and M = 45. The number of
principal components is chosen to be M ′ = 2.

In the simulation of RCS, the commercial software Ansoft HFSS
is exploited. Initially, the bistatic RCS from a perfectly conducting
sphere centered at the coordinate origin is simulated by the Ansoft
HFSS. The dimension of the perfectly conducting sphere is chosen to
be ka0 = 1.1 or ka0 = 7.7 (a0 is the sphere radius) so that the results
of RCS by Ansoft HFSS software and those of [8] can be compared
under the same condition. It is found that the results of RCS by
our simulation of Ansoft HFSS are consistent with those given in [8].
The purpose of this process is to verify that our operation of Ansoft
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HFSS software is correct. After our software operation is verified to
be correct, the RCS from ships are simulated by the Ansoft HFSS.

The radar recognition algorithm is trained using Step-1 to Step-
7 in Figure 2 or Section 2. After the algorithm is well trained, it
can identify the unknown target of ship by using Step-8 in Figure 2
or Section 2. In the testing, there are three examples to verify the
identification of the algorithm.

In the first example, the testing target ship is the ship of type I.
The RCS is collected at a specified elevation angle within the range of
60◦ ≤ θ ≤ 90◦ and this elevation angle is different from those of the
training data in Step-1. The RCS is collected at this elevation angle
and at azimuth angles of φ = 0◦, 1◦, . . . , 180◦ to constitute a testing
RCS vector X. Following the Step-8 given in Figure 2 or Section 2,
the testing for radar recognition of ships is performed. Figure 4 shows
the distance (class error) to feature centers for the three known classes
of ship RCS under 15 testing elevation angles at θ = 62◦, 64◦, . . . , 90◦.
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Figure 4. The distance (class error) to feature centers for the three
known classes of ship RCS at different elevation angles θ by using ship
of type I as the testing target.
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It should be emphasized that these testing elevation angles are not
included in the training data of Step-1. From Figure 4, it is found that
the smallest distance (class error) at every testing elevation angle is just
the distance to class of type I. In other words, of all the three types of
known ships, the ship of type I resembles unknown target most. This
result is very reasonable and the successful recognition rate is 100%
(=15/15).

In the second example, the testing target ship is the ship of type
II. The radar recognition procedures are the same as those given in
the first example. Figure 5 shows the distance (class error) to feature
centers for the three known classes of ship RCS under 15 testing
elevation angles at θ = 62◦, 64◦, . . . , 90◦. From Figure 5, it is found
that the smallest distance (class error) at 15 testing elevation angles is
the distance to class of type II. In other words, of all the three types of
known ships, the ship of type II resembles unknown target most. This
result is very reasonable and the successful recognition rate is 100%
(=15/15).
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Figure 5. The distance (class error) to feature centers for the three
known classes of ship RCS at different elevation angles θ by using ship
of type II as the testing target.
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In the third example, the testing target ship is the ship of type
III. The radar recognition procedures are the same as those given
in the first example. Figure 6 shows the distance (class error) to
feature centers for the three known classes of ship RCS under 15 testing
elevation angles at θ = 62◦, 64◦, . . . , 90◦. From Figure 6, it is found
that the smallest distance (class error) at every testing elevation angle
is just the distance to class of type III. In other words, of all the three
types of known ships, the ship of type III resembles unknown target
most. This result is very reasonable and the successful recognition rate
is 100% (=15/15).
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Figure 6. The distance (class error) to feature centers for the three
known classes of ship RCS at different elevation angles θ by using ship
of type III as the testing target.

The average of successful recognition rate is 100% (=45/45)
in the above simulation. In this study, the 181-dimensional RCS
vectors are projected into a two-dimensional eigenspace and performing
recognition in the eigenspace can still maintain high level of recognition
rate. Figure 7 shows the average of successful recognition rate with
respect to the number of principal components (M ′). In general,
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increasing the number of principal components will improve the
recognition rate. However, this will increase the computation work.
From Figure 7, it is found that two principal components are adequate
to achieve high recognition rate in such a problem.
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Figure 7. The average of successful recognition rate with respect to
the number of principal components.

For investigating the effects of noise, we add to each RCS
a quantity of independent random numbers having a Gaussian
distribution with zero mean. The standard derivation of noise is
normalized by the root-mean square value of the RCS. The standard
derivations of applied noises include 10−4, 10−3, 10−2, 10−1, 2 × 10−1

and 4 × 10−1. Figure 8 shows the mean of successful recognition rate
with respect to noise levels. The recognition rates for the above noise
levels are 100%, 100%, 100%, 95.3%, 91.8% and 79.6%, respectively.
It shows that the effect of noise is tolerable to achieve recognition rate
higher than 90% as noise levels are less than or equal to 2 × 10−1.

The above numerical simulations (including the Ansoft HFSS
software) are performed using personal computer with Pentium-3.0
CPU. The computer programs are coded using Fortran 90 in Absoft
ProFortran 6.2.
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Figure 8. The mean of successful recognition rate with respect to
noise levels.

4. CONCLUSION

In this paper, the angular-diversity radar recognition of ships is
given by transformation based approaches with noise effects taken
into consideration. Numerical simulation examples show that high
recognition rate is achieved by using the proposed method. In addition,
our recognition schemes can tolerate noise effects and still achieve high
recognition rate. This is due to the inherent ability of noise suppression
by the principal components analysis. The models of scatterers in
this study are somewhat simple compared with the practical situation.
However, this is not important because our main purpose is to illustrate
that the transformation based approaches can reduce the dimensions
of scattering data, tolerate noise effects and achieve high recognition
rate in such angular-diversity arrangements. From physical points
of view, the radar recognition from RCS is basically an approximate
approach of inverse scattering [9–14]. Similar to the angular-diversity
reconstruction of target shape in inverse scattering, the target ships
are well classified by their angular-diversity RCS characteristics in this
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study. With the use of transformation based approaches, the complex
RCS data are projected into a small-dimensional eigenspace in the
recognition procedures and high recognition rate can still be achieved
under noise effects. This will make the radar recognition of ships very
efficient and easy. Therefore, the work in this study can be applied to
many other radar applications.
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