Vol. 73
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-30
Modal Dispersion Characteristics of a Single Mode Dielectric Optical Waveguide with a Guiding Region Cross-Section Bounded by Two Involuted Spirals
By
, Vol. 73, 1-13, 2007
Abstract
With the use of scalar field approximation we make an analytical study of a dielectric waveguide whose core cross-section is bounded by two spirals of the form 1/r = ξθ. This waveguide is similar to that of a distorted slab waveguide in which both a curvature and a flare are present. We derived the modal characteristic equation by analytical analysis under the weak guidance approximation. We find the modal dispersion curve, which support only single mode propagation and the same compared with the same kind of waveguide with metal claddings.
Citation
Praveen Pandey, Akta Mishra, and Sant Ojha, "Modal Dispersion Characteristics of a Single Mode Dielectric Optical Waveguide with a Guiding Region Cross-Section Bounded by Two Involuted Spirals," , Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702
References

1. Broland, W. C., D. E. Zelmon, C. J. Radens, J. T. Boyd, and H. E. Jackson, "Propagation of the four layer planer optical waveguide near cutoff," IEEE J. Quantum Electron, Vol. 23, 1172-1197, 1978.
doi:10.1109/JQE.1987.1073487

2. Marcatilli, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," J. Bell Syst.Tech., Vol. 48, 2071-2102, 1969.

3. Goell, J. E., "A circular harmonic computer analysis of rectangular dielectric waveguide," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.

4. Kumar, A., V. Thyargaranjan, and A. K. Ghatak, "Analysis of rectangular core dielectric waveguide: An accurate perturbation approach," Opt. Lett., Vol. 8, 63-65, 1983.

5. Yeh, C., "Elliptical dielectric waveguide," J. Appl. Phys., Vol. 33, 3235-3242, 1962.
doi:10.1063/1.1931144

6. Dyott, R. B., "Cutoff of the first order mode in elliptical dielectric wave guide: Anexperimental approach," Electron Lett., Vol. 26, 1721-1723, 1990.
doi:10.1049/el:19901099

7. Dyott, R. B., "Glass-fiber waveguide with triangular core," Electron Lett., Vol. 9, 288-290, 1973.
doi:10.1049/el:19730209

8. James, J. R. and I. N. L. Gallett, "Modal analysis of triangular cored fiber waveguide," Proc. IEEE, Vol. 120, 1362-1370, 1973.

9. Rao, M. P. S., B. Prasad, P. Khastgir, and S. P. Ojha, "Modal cutoff condition for an optical waveguide with a hypocycloidal cross section microwave," Opt. Techonal. Lett., Vol. 14, 177-180, 1997.

10. Mishra, V. N., V. Singh, B. Prasad, and S. P. Ojha, "Analytical investigation of the dispersion characteristic of a light guide with an annular core cross section bounded by two cardioids," Microwave Opt. Technol. Lett., Vol. 23, 221-224, 1999.
doi:10.1002/(SICI)1098-2760(19991120)23:4<221::AID-MOP9>3.0.CO;2-G

11. Singh, V., B. Prasad, and S. P. Ojha, "Weak guidance modal analysis and dispersion curve of an infrared guide having a core cross section with a new type of asymmetric loop boundary," Optical Fiber Technology, Vol. 6, 290-298, 2000.
doi:10.1006/ofte.2000.0329

12. Panday, P. C., B. K. Panday, and S. P. Ojha, "Modal dispersion characteristics of a single mode metal coated optical waveguide with a guiding region cross-section bounded by two involuted spiral," Optik, Vol. 5, 211-214, 2000.

13. Singh, V., B. Prasad, and S. P. Ojha, "Theoretical analysis and dispersion curves of an annular light guide with a cross-section bounded by two piet-hein curves," J. Electromagnetic Waves and Appl., Vol. 17, 1025-1036, 2003.
doi:10.1163/156939303322519090

14. Polky, J. N. and G. L. Mitchell, "Metal-clad planar dielectric waveguide for integrated optics," J. Opt. Soc. Am., Vol. 64, 274-279, 1974.

15. Pandey, P. C., S. P. Ojha, and B. B. Srivastava, "A comparative study of the modal dispersion curves of fibers with different degrees of metal-loading on the core-cladding interfaces," Microwave and Optical Technology Letters, Vol. 26, 54-57, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<54::AID-MOP17>3.0.CO;2-W

16. Ganguly, S., K. S. Singh, P. C. Pandey, and S. P. Ojha, "Modal cutoff conditions for a waveguide having an annular guiding region with a parabolically gradded refractive index profile," Microwave and Optical Technology Letters, Vol. 22, 167-171, 1999.
doi:10.1002/(SICI)1098-2760(19990805)22:3<167::AID-MOP6>3.0.CO;2-9

17. Ganguly, S., K. S. Singh, P. C. Pandey, and S. P. Ojha, "Cutoff conditions of an annular dielectric waveguide with an exponentially decaying refractive index profile in the guiding region," Microwave and Optical Technology Letters, Vol. 22, 226-229, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<226::AID-MOP2>3.0.CO;2-L

18. Maurya, S. N., V. Singh, B. Prassad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross section of the shape of Cardiod," Journal of Electromagnetic Wave and Application, Vol. 20, 1021-1035, 2006.
doi:10.1163/156939306776930277

19. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electrmagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

20. Pandey, P. C., D. Singh, and S. P. Ojha, "Effect of metal loading on the modal dispersion characteristics an annular waveguide with guiding region section bounded by a square and a circle," Journal of Electromagnetic Wave and Application, Vol. 18, No. 9, 1157-1171, 2004.
doi:10.1163/1569393042955298

21. Singh, K. S., P. C. Pandey, and S. P. Ojha, "Modal characteristics of a Gyroelectromagnatic Chirofiber having a dielectric cladding — An analytical study," Optik, Vol. 111, 211-214, 2000.

22. Srivastava, S. K., P. C. Pandey, U. N. Singh, and S. P. Ojha, "Modal propagation characteristics and the effect of pitch angle on the propagation modes of an annular circular waveguide having conducting helical windings on the inner and outer boundaries," Microwave and Optical Technology Letters, Vol. 33, 338-344, 2002.
doi:10.1002/mop.10315

23. Varadan, V. K., A. Lakhtakia, and V. V. Varadan, "Propagation in a parallel-plate waveguide wholly filled with a chiral medium," J. Wave-Mater. Interaction, Vol. 3, 1988.

24. Yin, W. Y., P. Liand, and W. B. Wang, "Guided electromagnetic waves in a parallel-plate gyroelectromagnetic biaxial chirowaveguide," J. Mod. Opt., Vol. 41, 1994.

25. Choudhury, P. K. and T. Yoshino, "TE and TM modes power transmission through liquid crystal optical fibers," Optik, Vol. 115, No. 2, 49-56, 2004.

26. Reyes, J. A. and R. F. Rodriguer, "Guiding of optical fields in a liquid crystal cylindrical fibers," Optics Communications, Vol. 134, 349-361, 1997.
doi:10.1016/S0030-4018(96)00515-9

27. Kumar, D. and O. N. Singh, "Elliptical and circular step index fibers with conducting helical winding on the core cladding boundaries for different winding pitch angles — A comparative modal dispersion analysis," Progress In Electrmagnetics Research, Vol. 52, 1-21, 2005.
doi:10.2528/PIER04052002

28. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "An optical waveguide with a hypocycloidal core cross section having a conducting sheath helix winding on the core cladding boundary a comparative modal dispersion study vis-a-vis a standard fiber with a sheath winding," Journal of Electromagnetic Wave and Application, Vol. 19, 1307-1326, 2005.
doi:10.1163/156939305775525846