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Abstract—With the use of scalar field approximation we make an
analytical study of a dielectric waveguide whose core cross-section is
bounded by two spirals of the form 1

r = ξθ. This waveguide is similar to
that of a distorted slab waveguide in which both a curvature and a flare
are present. We derived the modal characteristic equation by analytical
analysis under the weak guidance approximation. We find the modal
dispersion curve, which support only single mode propagation and the
same compared with the same kind of waveguide with metal claddings.

1. INTRODUCTION

The research on the conventional and unconventional shapes of the
waveguides has focused much attention during the last two decades.
Unconventional waveguides with core cross-sections such as elliptical,
rectangular, triangular, pentagonal, annular, spiral, cardioids etc. have
been studied by the several researchers [1–13]. Such unconventional
waveguides play an important role in the design and operation of many
integrated optical devices such as wavelength filtering, coupling and
semiconductor laser technology.

New material like metallic, chiral materials, liquid crystals,
magnetic crystals etc have also been introduced as constitutive
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materials for new kinds of unconventional waveguides in either core
or cladding [14–26]. These smart structured waveguides with smart
materials provide a rich variety of characteristics; several books and
research papers have appeared in this area. Recently some new
works have been introduced, in which a new type of annular optical
waveguide whos outer cladding is made of sheath helix. The sheath
helix is made up of dielectric material of lower refractive index than
the core material [25, 26]. These types of waveguides provide us new
ideas about the modal wave propagation with some band gaps. It is
expected that the theoretical work of this kind will provide the model
properties of a variety of waveguide forming a rich fund of results from
which technologists and scientists working in this practical fields can
choose the required characteristics and structures. In future when
the necessary fabrication technology becomes available, the possibility
of fabrication if not already there, is not remote in view of current
advances in technology, if only the experimentalists and practical
scientists are sufficiently interested or encouraged to take up this sort
of work.

Dispersion in single mode fibers has been a subject of paramount
interest in the field of optical telecommunication. In the recent paper
Pandey et al. [12] describes the model characteristics of a waveguide
with a new type of spiral geometrical cross-section. In that paper
Pandey et al. [12] considered the guiding region of the involuted
spiral is made of dielectric and the cladding i.e., the boundaries of
the guiding region are considered to be made of metallic (highly
conducting) substance. In this present paper the model dispersion
characteristics of an optical waveguide with a guiding region cross-
section bounded by two involuted spirals has been considered. The
transverse core cross section of the proposed waveguide is shown in
Fig. 1, this proposed waveguide is considered of completely dielectric
i.e., both the core and cladding are made of non magnetic dielectric
material. The modal dispersion curve of this case is compared with the
same of the similar kind of waveguide having metallic cladding. The
analysis of the proposed waveguide is done under the weak guidance
approximation i.e., (n1−n2)/n1 � 1, where n1 and n2 are the refractive
indices of the core and cladding respectively. The schematic diagram
of the proposed waveguide is shown in Fig. 1, in which the guiding
region lies between curves.

2. THEORY

The particular geometry to be studied is depicted in the Fig. 1. We
have been considered two involuted spirals, which can be treated as a
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Figure 1. Schematic diagram of the transverse core cross-section of
the proposed waveguide.

special case of the equation

rp = ξθ (1)

and the equation of its normal curves is

rp = ηe−p2θ2/2 (2)

where ξ & η are size parameter and p is a real number
Our structure is defined by p = −1. So the Equations (1) and (2)

take the form
r−1 = ξθ and r−1 = ηe−θ2/2 (3)

For this study we have considered dielectric waveguide with core
refractive index n1 and n2 the refractive index of cladding such that
(n1 − n2)/n1 � 1. This fulfills the condition of the weak guidance
approximation. To solve this problem we have taken new co-ordinate
system (ξ, η, z) as appropriate co-ordinates. For this appropriate
coordinates, one uses the point of intersection of two sets of normal
curves on the cross sectional plane of waveguide. The equations of
the boundary and its normal curve are given in Equation (3). The
direction of propagation is the z-direction, which is perpendicular to
the plane of paper shown in the Fig. 1. After some straightforward
steps we obtain the scale factor h1, h2, and h3 for the co-ordinate ξ, η,
z these are written as,

h1 =
r

(p2θ2 + 1)

(
1

p2η2
+

θ2

η2

) 1
2
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h2 =
r

(p2θ2 + 1)

(
p2θ4

ξ2
+

θ2

ξ2

) 1
2

h3 = 1

and for the particular case p = −1, i.e., for our proposed waveguide
the scale factors are

h1 =
r

η (θ2 + 1)
1
2

h2 =
rθ

ξ (θ2 + 1)
1
2

and h3 = 1

where

r =
1

ξ

{
1
2

ln
(
η

ξ

)
+

3
4

}

θ =
{

1
2

ln
(
η

ξ

)
+

3
4

}

Substituting the values of r and θ we have the scale factors for
our case

h1 =
1

ξη

{
1
2

ln
(
ξ

η

)
+

3
4

} [{
1
2

ln
(
ξ

η

)
+

3
4

}2

+ 1

] 1
2

h2 =
1

ξ2

[{
1
2

ln
(
ξ

η

)
+

3
4

}2

+ 1

] 1
2

and h3 = 1

Using the Helmholtz scalar-wave equation for the z-component
of the electric field Ez under the weak guidance condition, the wave
equation can be written as

∇2Ez + ω2µ0εEz = 0 (4)

∇2 is the scalar Laplacian operator, and its form in terms of scale
factors is given by

∇2 =
1

h1h2h3

[
∂

∂ξ

(
h2h3

h1

∂

∂ξ

)
+

∂

∂η

(
h1h3

h2

∂

∂η

)
+

∂

∂z

(
h1h2

h3

∂

∂z

)]



Progress In Electromagnetics Research, PIER 73, 2007 5

Since the dielectric material is considered as non magnetic so
the permeability of the medium is taken to be µ0 and ε is the
permittivity of the dielectric medium and ω is the angular frequency
of the electromagnetic wave. In the scalar field approximation the
Equation (4) can be solved by using the method of separation of
variables. This is possible only if we assume that η → ξ. In this
approximation the modified differential equation is given by

3
4
ξ2η

d2




3
4
η

ξ

∂2Ez

∂ξ2
− 3

4
η

ξ2

∂Ez

∂ξ
+

4
3
ξ

η

∂2Ez

∂η2
−

4
3

ξ

η2

∂Ez

∂η
+

4
3

d2

ξ3η

∂2Ez

∂z2


 + ω2µεEz = 0 (5)

where d = constant = 0.8.
For the method of separation of variable for the solution of

Equation (5), we assumed that the solution Ez is a function of ξ and
η. That is

Ez = E1(ξ)E2(η) exp[j(ωt− βz)] (6)
where β is the propagation constant along the z-direction. Now the
above Equation (5) takes the form

ξ2∂
2E1(ξ)
∂ξ2

− ξ3∂E1(ξ)
∂ξ

+
16
9

d2U2E1(ξ) = 0 (7)

η2∂
2E2(η)
∂η2

− η3∂E2(η)
∂η

− 16
9

d2W 2E2(η) = 0 (8)

where U =
√(

k2
0n

2
1 − β2

)
and W =

√(
β2 − k2

0n
2
2

)
also k0 = 2π/λ0.

Equation (7) is valid for the guiding region and Equation (8) for
the cladding region of the proposed waveguide. To obtain the field in
core and cladding we have to solve these equations.

For convenience, we now use new symbols, such that

E1(ξ) ≡ y

and
ξ ≡ x

and 16d2

9 U2 = P , then Equation (7) reduces to

x4 d
2y

dx2
− x3 dy

dx
+ Py = o (9)

Similarly for the cladding region we have

x4 d
2y

dx2
− x3 dy

dx
− P ′y = o (10)
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where 16d2

9 W 2 = P ′.
We choose the substitution

� = Px−2

Then the Equation (9) becomes

d2y

d�2
+

2
�

dy

d�
+

1
4�

y = 0 (11)

Similarly the Equation (10) becomes

d2y

dm2
+

2
m

dy

d�
− 1

4m
y = 0 (12)

for the substitution of m = P ′x−2.
By applying power solution method, we have four independent

solutions for core and clad region are given by,

ycore(x) = c1y1(x) + c2y2(x)

yclad(x) = c3y3(x) + c4y4(x)

where

y1(x) = a0

[
1+τ

(
P/x2

)
1.2

+τ2

(
P/x2

)2

1.22.3
+τ3

(
P/x2

)3

1.22.32.4
+. . .

]

y2(x) =
1
a0

[
− 1

(P/x2)2
− τ

2
+

τ2

2
(P/x2)− 41

144
τ2(P/x2)2− 12

144
τ4(P/x2)3−. . .

−τ log
(
P/x2

){
1+τ

(
P/x2

)
1.2

+ τ2

(
P/x2

)2

1.22.3
+ τ3

(
P/x2

)3

1.22.32.4
+ . . .

}]

y3(x) = c0

[
1 + σ

(
P ′/x2

)
1.2

+ σ2

(
P ′/x2

)2

1.22.3
+ σ3

(
P ′/x2

)3

1.22.33.4
+ . . .

]

y4(x) = b0

[
1

(P ′/x2)
−σ− 5

4
σ2(P ′/x2)− 5

18
σ3(P ′/x2)2− 47

48×36
σ4(P ′/x2)3−. . .

+σlog(P ′/x2)

{
1+σ

(P ′/x2)
1.2

+σ2 (P ′/x2)2

1.22.3
+σ3 (P ′/x2)3

1.22.32.4
+ . . .

}]

where τ = −1
4 and σ = 1

4 , and c1, c2, c3 and c4 are constant, which
can be determined by applying the boundary condition for the scalar



Progress In Electromagnetics Research, PIER 73, 2007 7

fields and a0, c0, and b0 are arbitrary constants. These are

ycore(x)|x=a = yclad(x)|x=a

ycore(x)|x=b = yclad(x)|x=b

y′core(x)|x=a = y′clad(x)|x=a

y′core(x)|x=b = y′clad(x)|x=b

Using these boundary conditions and for non trivial solution we
have ∣∣∣∣∣∣∣∣

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

∣∣∣∣∣∣∣∣
= 0

where

y11 = a0

[
1 + τ

(
P/a2

)
1.2

+ (τ)2
(
P/a2

)2

1.22.3
+ (τ)3

(
P/a2

)3

1.22.32.4
+ . . .

]

y12 =
1
a0

[
− 1

(P/a2)
− (τ)

2
+

(τ)2

2

(
P/a2

)
+

41(τ)3

144

(
P/a2

)2
− 12(τ)4

144

(
P/a2

)3
+. . .

−(τ) log(P/a2)

{
1+(τ)

(P/a2)
1.2

+(τ)2
(
P/a2

)2
1.22.3

+(τ)3
(
P/a2

)3
1.22.32.4

+ . . .

}]

y13 = c0

[
1 + (σ)

(
P ′/a2

)
1.2

+ (σ)2
(
P ′/a2

)2

1.2.3
+ (σ)3

(
P ′/a2

)3

1.22.32.4
+ . . .

]

y14 = b0

[
1

(P ′/a2)
−σ−

(
5
4

)
(σ)2(P ′/a2)+

5
18

(σ)3(P ′/a2)2

− 47
48×36

(σ)4(P ′/a2)3+. . . + σ log(P ′/a2)

×
[
1 + (σ)

(P ′/a2)
1.2

+ (σ)2
(P ′/a2)2

1.22.3
+ (σ)3

(P ′/a2)3

1.22.32.4
+ . . .

]]

y21 = a0

[
1 + (τ)

(
P/b2

)
1.2

+ (τ)2
(
P/b2

)2

1.22.3
+ (τ)3

(
P/b2

)3

1.22.32.4
+ . . .

]

y22 =
1
a0

[
− 1

(P/b2)2
− 1

2
(τ)+

1
2
(τ)2

(
P/b2

)
− 41

144
(τ)3

(
P/b2

)2

− 12
144

(τ)4
(
P/b2

)3
+. . .− (τ) log

(
P/b2

)

×
{

1+ (τ)
P/b2

1.2
+(τ)2

(
P/b2

)2

1.22.3
+(τ)3

(
P/b2

)3

1.22.32.4
+ . . .

}]
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y23 = c0

[
1 + (σ)

(
P ′/b2

)
1.2

+ (σ)2
(
P ′/b2

)2

1.22.3
+ (σ)3

(
P ′/b2

)3

1.22.32.4
+ . . .

]

y24 = b0

[
1

(P ′/b2)
−σ−

(
5
4

)
σ2(P ′/b2)+

5
18

σ3(P ′/b2)2− 47
48×36

σ4(P ′/b2)3+. . .

+σ log(P ′/b2)

[
1 + σ

(P ′/b2)
1.2

+ σ2 (P ′/b2)2

1.22.3
+ σ3 (P ′/b2)3

1.22.32.4
+ . . .

]]

y31 = a0

[
−τ

2
(
P/a2

)
1.2.a

− τ2 4
(
P/a2

)2

1.22.3.a
− τ3 6

(
P/a2

)3
.6

1.22.32.4.a
− · · ·

]

y32 =
1
a0

[
− 2

a3(P/a2)2
−τ2(P/a2)− 164τ3(P/a2)2

144.a
− 72τ4(P/a2)3

144.a
−. . .

−τ log
(
P/a2

) {
−τ

2(P/a2)
1.2.a

− 4τ2(P/a2)2

1.22.3.a
−6τ3 (P/a2)3

1.22.32.4.a
− · · ·

}

+
2τ
a

{
1 + τ

(
P/a2

)
1.2

+ τ2

(
P/a2

)2

1.22.3
+ τ3

(
P/a2

)3

1.22.33.4
+ . . .

}]

y33 = c0

[
−σ

(P ′/a2)
1.2.a

−σ2 4(P ′/a2)2

1.22.3.a
−σ3 6(P ′/a2)3

1.22.32.4.a
−σ4 8(P ′/a2)4

1.22.32425.a
−. . .

]

y34 = b0

[
1

(P ′/a2)
· 1
a

+
5
2
σ

(
P ′/a2

)
· 1
a

+
5×4
18

σ3
(
P ′/a2

)2 1
a

+
47 × 6
48 × 36

σ4
(
P ′/a2

)3
· 1
a

+ . . . + σ log
(
P ′/a2

)
{
−2σ ·

(
P ′/a2

)
1.2.a

− 4σ2 ·
(
P ′/a2

)2

12.22.3.a
− 6σ3 ·

(
P ′/a2

)3

12.22.32.4.a
+ . . .

}]

y41 = a0

[
−σ

2 ·
(
P/b2

)
1.2..b

− σ2 4 ·
(
P/b2

)2

1.22.3.b
− σ3 6 ·

(
P/b2

)3

1.22.32.4.b
− . . .

]

y42 =
1
a0

[
− 2

b3 · (P/b2)2
−τ2 (P/b2)

b
− 164

144
τ3 (P 2/b2)2

b
− 72

144
τ4 (P/b2)3

b
−· · ·

−τ log(P/b2)

{
−τ

2 · (P/b2)
1.2.b

−τ2 4 · (P/b2)2

1.22.3.b
−τ3 6(P/b2)3

1.22.32.4.b
−. . .

}]

y43 = c0

[
−σ

(
P ′/b2

)
1.2..b

− σ2 4 ·
(
P ′/b2

)2

1.22.3.b
− σ3 6 ·

(
P ′/b2

)3

1.22.32.4.b
− · · ·

]

y44 = b0

[
1

(P ′/b2)
.
1
b

+
5
2
σ(P ′/b2) · 1

b
+

5×4
18

σ3(P ′/b2)2
1
b
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+
47 × 6
48 × 36

σ4
(
P ′/b2

)3
· 1
b

+ . . . + σ log
(
P ′/b2

)
{
−2σ · 2·(P

′/b2)
1.2

· 1
b
−σ2 4·(P ′/b2)2

1.22.3
· 1
b
− σ3 6 · (P ′/b2)3

1.22.32.4
· 1
b

+ . . .

}]

Equation (12) can be written as

|yij | = 0 (13)

where indices i, j each may take integral value from 1 to 4.
Equation (13) is the characteristic equation of the waveguide

under consideration. With the help of this characteristic equation
the modal properties of the wave propagation through this proposed
waveguide under the weak guidance condition can be obtained.

3. NUMERICAL COMPUTATIONS, RESULTS AND
DISCUSSION

In order to understand the content of the characteristic Equation (13),
in which is central result exists of this paper, it is necessary to make
some numerical computations by choosing physically realizable values
of the parameters n1, n2, a−1, b−1 and λ0. We choose the values
n1 = 1.48, n2 = 1.46, a−1 = 2µm, b−1 = 4µm and λ0 = 1.55µm.
We next choose a set of regularly spaced β values and for each β,
compute the L.H.S. of Equation (13). In our case, as we plot the
L.H.S. Equation (13) against β, we find only one point of intersection
of the graph with β axis. This indicates that the only one mode
can be sustained. Keeping the values a−1 fixed, we now repeat the
computations for different increasing values of b−1, and make a list
of the β values intersecting with the β axis. We now plot these β or
equivalently b′ i.e., normalized propagation constant values against the
normalized frequency parameter V .

b′ =

(
β2

k2

)
− n2

2

n2
1 − n2

2

and V = 2π
λ

(
b−1 − a−1

) (
n2

1 − n2
2

) 1
2 .

We thus get the dispersion curve as shown in Fig. 2. The single
dispersion curve shows that our structure is a single mode waveguide.
The modal cutoff occurs at V = 16, below which not even a single
mode is sustained; for all value of V > 16 we get only a single mode
and the mode attains a saturation values of b′ slowly as V reaches the
relatively large value, V = 40.
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Figure 2. Modal dispersion characteristic curve of the proposed
waveguide.

The similar kind of dispersion curve has also been obtained
when the same kind of waveguide [12] was considered with perfectly
conducting (metallic) claddings. Only the cut off in this case was
appeared at V = 4 and saturation of the dispersion curve was also
relatively low value of V compared to the dielectric claddings.

The greater the cut off value for the single mode propagation
is required for the convenience of manufacturing of the single mode
waveguide, so this type of the waveguide fulfills the desire of the
scientific field at some extent. Although it is difficult to visualize the
cross-section at the narrow end, at the wider end the cross-section is
similar to that of a distorted slab waveguide in which both a curvature
and flare are present so this kind of waveguide can be used to study
the tolerance of slab waveguide which is deformed at on end.
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