Vol. 69
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-21
Neural Models for Coplanar Strip Line Synthesis
By
, Vol. 69, 127-144, 2007
Abstract
Simple and accurate models based on artificial neural networks (ANNs) are presented to accurately determine the physical dimensions of coplanar strip lines (CPSs). Five learning algorithms, Levenberg-Marquardt (LM), bayesian regularization (BR), quasi- Newton (QN), conjugate gradient with Fletcher (CGF), and scaled conjugate gradient (SCG), are used to train the neural models. The neural results are compared with the results of the quasi-static analysis and the synthesis formulas available in the literature. The accuracy of the neural model trained by LM algorithm is found to be better than 0.24% for 10614 CPS samples.
Citation
Celal Yildiz, Kerim Guney, Mustafa Turkmen, and Sabri Kaya, "Neural Models for Coplanar Strip Line Synthesis," , Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802
References

1. Chiou, H. K., C. Y. Chang, and H. H. Lin, "Balun design for uniplanar broad band double balanced mixer," Electronic Letters, Vol. 31, 2113-2114, 1995.
doi:10.1049/el:19951404

2. Wen, C. P., "Coplanar waveguide: A surface transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

3. Ghione, G., "A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1499-1510, 1993.
doi:10.1109/22.245668

4. Chen, E. and S. Y. Chou, "Characteristic of coplanar transmission lines on multilayer substrates: Modelling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606

5. Bedair, S. S., "Characteristic of some asymmetrical coupled transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 108-110, 1984.
doi:10.1109/TMTT.1984.1132620

6. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 20, 179-181, 1984.
doi:10.1049/el:19840120

7. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624

8. Phatak, D. S. and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 654-661, 1990.
doi:10.1109/22.54935

9. Phatak, D. S., N. K. Das, and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines: Comprehensive full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1719-1730, 1990.
doi:10.1109/22.60020

10. Deng, T. Q., M. S. Leong, P. S. Kooi, and T. S. Yeo, "Synthesis formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 32, 2253-2254, 1996.
doi:10.1049/el:19961521

11. Yildiz, C., "New and very simple synthesis formulas for coplanar strip line," Microwave and Optical Technology Letters, Vol. 44, 199-202, 2005.
doi:10.1002/mop.20586

12. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559

13. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., 1994.

14. Watson, M. and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 2515-2523, 1997.
doi:10.1109/22.643868

15. Sagiroglu, S. and C. Yildiz, "A multilayered perceptron neural network for a micro-coplanar strip line," Electromagnetics, Vol. 22, 553-563, 2002.
doi:10.1080/02726340290084111

16. Yildiz, C., S. Gultekin, K. Guney, and S. Sagiroglu, "Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor," AE ¨ U-International Journal of Electronics and Communications, Vol. 56, 396-406, 2002.
doi:10.1078/1434-8411-54100128

17. Yildiz, C., S. Sagiroglu, and O. Saracoglu, "Neural models for coplanar waveguides with a finite dielectric thickness," Int. J. RF and Microwave CAE, Vol. 13, 438-446, 2003.
doi:10.1002/mmce.10104

18. Yildiz, C., S. Sagiroglu, O. Saracoglu, and M. Turkmen, "Neural models for an asymmetric coplanar stripline with an infinitely wide strip," International Journal of Electronics, Vol. 90, 509-516, 2003.
doi:10.1080/00207210310001621554

19. Yildiz, C., S. Sagiroglu, and M. Turkmen, "Neural model for coplanar waveguide sandwiched between two dielectric substrates," IEE Proc-Microwaves Antennas and Propagation, Vol. 151, 7-12, 2004.
doi:10.1049/ip-map:20040249

20. Devabhaktuni, K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q. J. Zhang, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF and Microwave CAE, Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I

21. Watson, P. M., C. Choonsik, and K. C. Gupta, "Electromagneticartificial neural network model for synthesis of physical dimensions for multilayer asymmetric coupled transmission structures," Int. J. RF and Microwave CAE, Vol. 9, 175-186, 1999.
doi:10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P

22. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "CAD models for coplanar waveguide synthesis using artificial neural networks," IETE Technical Review, Vol. 18, 123-129, 2001.

23. Yildiz, C. and M. Turkmen, "Very accurate and simple CAD models based on neural networks for coplanar waveguide synthesis," Int. J. of RF and Microwave CAE, Vol. 15, 218-224, 2005.
doi:10.1002/mmce.20072

24. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "Artificial neural network models for coplanar stripline synthesis," IETE Journal of Education, Vol. 43, 27-31, 2002.

25. Hagan, M. T. and M. Menjah, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, 989-993, 1994.
doi:10.1109/72.329697

26. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992.

27. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.

28. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J., Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149

29. Moller, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5

30. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

31. Christodoulou, C. G. and M. Georgiopoulos, Application of Neural Networks in Electromagnetics, Artech House, 2001.

32. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Wave and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917

33. Jin, L. C., L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Wave and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259

34. Mohamed, M. D. A., E. A. Soliman, and M. A. El- Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Wave and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

35. Thomas, V., et al. "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Wave and Applications, Vol. 19, 2113-2121, 2005.
doi:10.1163/156939305775570477