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Abstract—Simple and accurate models based on artificial neural
networks (ANNs) are presented to accurately determine the physical
dimensions of coplanar strip lines (CPSs). Five learning algorithms,
Levenberg-Marquardt (LM), bayesian regularization (BR), quasi-
Newton (QN), conjugate gradient with Fletcher (CGF), and scaled
conjugate gradient (SCG), are used to train the neural models. The
neural results are compared with the results of the quasi-static analysis
and the synthesis formulas available in the literature. The accuracy of
the neural model trained by LM algorithm is found to be better than
0.24% for 10614 CPS samples.

1. INTRODUCTION

CPSs, like coplanar waveguides, allow easy connections for series and
shunt solid state devices. Good propagation, small dispersion, com-
parably intensive to substrate thickness, and simple implementation
of open or short-ended strips are the basic characteristics of CPSs.
Briefly, CPSs support all of the advantages of the conventional copla-
nar waveguides. Furthermore, the structure of CPSs is very useful for
radio frequency and microwave integrated circuits (MICs), especially
balanced circuits due to its inherent balanced nature [1]. Various sym-
metric and asymmetric CPSs on single or multilayer substrates were
analyzed to obtain closed-form expressions for quasi-TEM parameters
using quasi-static methods [2–6] and to determine dispersion character-
istics of CPSs with the use of full-wave methods [7–9]. While full-wave
methods are the most accurate tools for obtaining the transmission-
line characteristics and are also analytically extensive, the quasi-static
methods are quite simple and lead to closed-form expressions suitable
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for computer-aided design (CAD) software packages, but the latter
methods do not consider the dispersive nature of generic transmission
lines. Consequently, the approximation of quasi-static methods be-
comes worse as the transmission line becomes dispersive. However,
it was shown by Knorr and Kuchler [7] that the CPS parameters are
only slightly sensitive to variations of the frequency for CPSs with di-
mensions not exceeding the substrate thickness for nearly the whole
microwave region. For this reason, the quasi-static methods provide
simulation accuracy that is comparable with the full-wave methods for
frequencies up to 20 GHz and even up to 40 GHz.

Most of the conventional models for various CPSs are the analysis
models [2–9] that have been used to determine the characteristic
parameters of CPS structures. The synthesis models were also
presented in the literature [10–12]. These synthesis models are directly
used to obtain the physical dimensions of CPS structures for the
required design specifications. The model proposed by Deng et al.
[10] is mathematically complex. The models presented by Yildiz [11]
and Yildiz et al. [12] are simple but do not have very good accuracy.
Hence, they are not very attractive for the CPS synthesis.

This paper presents simple and accurate synthesis models based
on ANNs in order to very accurately compute the physical dimensions
of CPS structures for the required design specifications. ANN is a
very powerful approach for building complex and nonlinear relationship
between a set of input and output data [13]. Analysis [14–20] and
synthesis models [21–24] based on ANNs have been presented for
various coplanar transmission lines. In these applications, ANNs have
more general functional forms and are usually better than the classical
techniques; also, they provide simplicity in real-time operation. One
of the most powerful uses of ANNs is function approximation (curve-
fitting). A main characteristic of this solution is that a function (f) to
be approximated is given not explicitly, but implicitly through a set of
input-output pairs called training data sets.

Neural model for the CPS synthesis was introduced for the
first time by Salivahanan et al. [24]. This neural model has some
disadvantages. First of all, it can be used in the narrow range:
2 ≤ εr ≤ 13, 0.5 ≤ S/H ≤ 5, and 0.5 ≤ W/H ≤ 5. It is not possible
to design CPSs having small characteristic impedances (Z0 < 70 Ω) for
the ranges of εr < 13, 0.5 < S/H, and 0.5 < W/H. Thus, this neural
model is not suitable for practical ranges. Moreover, the neural model
proposed in [24] was trained using only one learning algorithm.

In this paper, simple and accurate neural models with a very wide
range of usage for CPS synthesis are presented within the following
design-parameter ranges: 2.2 ≤ εr ≤ 50, 0.01 ≤ S/H ≤ 1.86, and
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Figure 1. Configuration of a CPS.

0.01 ≤ W/H ≤ 5.59. These neural models were trained with LM [25],
BR [26], QN [27], CGF [28], and SCG [29] learning algorithms to obtain
better performance and faster convergence with a simpler structure.
For the validation of the neural models proposed in this paper, the
neural synthesis results have been compared with the results of the
quasi-static analysis [6] and the synthesis formulas proposed by other
researchers [10–12].

2. SYNTHESIS FORMULAS FOR CPSS

A CPS with a finite dielectric thickness configuration is depicted
in Fig. 1, where S,W,H, and εr represent the slot width, strip
width, substrate thickness, and relative dielectric constant of the
substrate material, respectively. All the conductors are assumed to
be infinitely thin and perfectly conducting. The following synthesis
formula proposed in [10] calculates the strip width W for a given
substrate (H, εr) and required characteristic impedance Z0 by choosing
an appropriate slot width S.

W =
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where η0 is the intrinsic impedance of free space and εre is the relative
effective dielectric constant given by
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The value of G in eq. (1) can also be obtained from the following
eqs. (3) and (4) proposed in [11] and [12], respectively.
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The following synthesis formula presented by Deng et al. [10]
calculates the slot width S for a given substrate (H, εr) and required
characteristic impedance Z0 by choosing an appropriate strip width
W .

S = W ·G(εr, H, Z0,W ) (5)

with
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The value of G in eq. (5) can also be determined from the following
eqs. (7) and (8) proposed in [11] and [12], respectively.
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The synthesis formulas given above are valid for the ranges of S/H ≤
10/[3(1 + ln εr)], W/H ≤ 10/(1 + ln εr), and 2.2 ≤ εr ≤ 50.
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3. ARTIFICIAL NEURAL NETWORKS (ANNS)

ANN represents a promising modeling technique, especially for data
sets having non-linear relationships that are frequently encountered in
engineering [13, 30–35]. In the course of developing an ANN model,
the architecture of ANN and the learning algorithm are the two most
important factors. ANNs have many structures and architectures
[13]. The class of ANN and/or architecture selected for a particular
model implementation depends on the problem to be solved. After
several experiments using different architectures coupled with different
training algorithms, in this paper, the multilayered perceptron (MLP)
neural network architecture [13] is used in calculating the physical
dimensions of CPSs. MLPs have a simple layer structure in which
successive layers of neurons are fully interconnected, with connection
weights controlling the strength of the connections. The MLP
comprises an input layer, an output layer, and a number of hidden
layers. MLPs can be trained using many different learning algorithms
[13]. In this article, the five learning algorithms described briefly in
the following sections were used to train the MLPs.

3.1. Levenberg-Marquardt (LM) Algorithm

This algorithm is a least-squares estimation algorithm based on the
maximum neighborhood idea [25]. The error function E(w) is given
by

E(w) =
m∑

i=1

e2
i (w) = ‖g(w)‖2 (9)

with

e2
i (w) = (ydi − yi)2 (10)

where g(w) is a function containing the individual error terms, ydi is
the desired value of output neuron i, and yi is the actual output of
that neuron.

It is assumed that function g(w) and its Jacobian J are known
at point w. The LM algorithm is used to calculate the weight vector
w such that E(w) is minimum. A new weight vector wk+1 can be
determined from the previous weight vector wk as follows:

wk+1 = wk + δwk (11)

with

δwk = −
(
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k g(wk)
) (

JT
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)−1
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where k is the number of the iterations, Jk is the Jacobian of g(wk)
evaluated by taking derivative of g(wk) with respect to wk, λ is the
Marquardt parameter, and I is the identity matrix.

3.2. Bayesian Regularization (BR) Algorithm

This algorithm updates the weight and bias values according to the
LM optimization and minimizes a linear combination of squared errors
and weights [26]. It also modifies the linear combination so that at the
end of training the resulting network has good generalization qualities.
Backpropagation is used to compute the Jacobian JX of performance
with respect to the weight and bias variables X. Each variable is
adjusted according to LM:

dX = −[(JX)(JX) + λI]−1[(JX)E] (13)

3.3. Quasi-Newton (QN) Algorithm

This algorithm consists of the following steps [27]:

1. Set a search direction sk = −Bk · gk,
2. wk+1 = wk + η · sk,

3. Update Bk giving Bk+1

where B is the approximate inverse second derivative matrix, g is the
first derivative term, η is a scalar step length parameter, and s is an
updating direction. The major concept of the algorithm is the updating
strategy for the approximate inverse second derivative matrix. Bk+1

is obtained by using the following formula:

Bk+1 = B +
(

1 +
γTBγ

σTγ

)
σσT

σTγ
− σγTB + BγσT

σTγ
(14)

with

γk = gk+1 − gk (15)

and

σk = ηsk = wk+1 − wk (16)

The initial matrix B is usually selected to be a unit matrix.
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3.4. Conjugate Gradient of Fletcher-Reeves (CGF)
Algorithm

This algorithm updates weight and bias values according to the
formulas proposed by Fletcher and Reeves [28]. The method of
conjugate directions can be used to minimize a positive definite
quadratic function in n steps. The minimum of E is determined by
a sequence of linear searches along directions sk, k = 1, 2, , . . . , n

wk+1 = wk = µksk (17)

with

µk = arg minµE(wk + µsk) (18)

and

sk+1 = −d(wk+1) + βksk (19)

where d(wk) = ∂E(w)
∂wij

∣∣∣
w=wk

, and βk is given by [28]:

βk =
d(wk+1)Td(wk+1)
d(wk)Td(wk)

(20)

3.5. Scaled Conjugate Gradient (SCG) Algorithm

This algorithm [29] is an implementation of avoiding the complicated
line search procedure of conventional conjugate gradient algorithm.
For the SCG algorithm, the Hessian matrix is approximated by using
the following formula

E′′(wk)sk ≈ E′(wk + σksk) − E′(wk)
σk

+ λksk (21)

where E′ and E′′ are the first and second derivative information of
error function E(wk). The other terms sk, σk and λk represent the
search direction, the parameter controlling the change in weight for
second derivative approximation, and the parameter for regulating the
indefiniteness of the Hessian, respectively.

4. SYNTHESIS MODELS BASED ON ANNS FOR CPSS

In this paper, two simple and accurate neural models are proposed for
CPS synthesis. The first neural model computes the strip width W
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(a)

(b)

Figure 2. Neural models for CPS synthesis: (a) the first neural model
used to calculate the strip width of a CPS; (b) the second neural model
used to calculate the slot width of a CPS.

for a given substrate (H, εr) and required characteristic impedance Z0

by choosing an appropriate slot width S. The second neural model
calculates the slot width S for a given substrate (H, εr) and required
characteristic impedance Z0 by choosing an appropriate strip width
W . Fig. 2(a) and 2(b) show the first and second neural models used
for neural computation of the strip width and slot width of CPSs,
respectively.

ANN models are a kind of black box models, whose accuracy
depends on the data presented to it during training. A good collection
of the training data, i.e., data which is well-distributed, sufficient, and
accurately simulated, is the basic requirement to obtain an accurate
model. For microwave applications, there are two types of data
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generators, namely measurement and simulation. The selection of
a data generator depends on the application and the availability of
the data generator. The training data sets used in this paper were
obtained from the respective quasi-static analysis [6] and contain 7839
samples. The design parameter ranges of the CPSs in these samples
are 2.2 ≤ εr ≤ 50, 0.01 ≤ S/H ≤ 1.86, 0.01 ≤ W/H ≤ 5.59, 200µm
≤ H ≤ 1250µm, and respective characteristic impedance 30Ω ≤ Z0 ≤
600Ω. 2775 data sets, which are completely different from training
data sets, were used to test the ANNs. The train and test data sets
were generated under the following constraints: normalized strip width
W/H ≤ 10/(1 + ln εr), normalized slot width S/H ≤ 10/[3(1 + ln εr)],
and relative dielectric constant 2.2 ≤ εr ≤ 50. The values of the input
and the output data sets were scaled between 0 and 1 before training.

The aim of the training process is to minimize the training error
between the target output and the actual output of the ANN. Training
the ANNs with the use of a learning algorithm to calculate strip widths
W or the slot widths S of CPSs involves presenting them sequentially
and/or randomly with different sets (εr, Z0, H, and S or W ) and
corresponding parameters (W or S). First, the input vectors (εr, Z0, H,
and S or W ) are presented to the input neurons and output vector (W
or S) is computed. ANN output is then compared to the known output
of the training data sets and errors are computed. Error derivatives are
then calculated and summed up for each weight until all the training
examples have been presented to the network. These error derivatives
are then used to update the weights for neurons in the model. Training
proceeds until errors are lower than prescribed values.

Selection of training parameters and the entire training process
mostly depend on experience besides the type of problem at hand.
After several trials, it was found in this paper that three hidden layered
network was achieved the task in high accuracy. The most suitable
network configuration found was 4 × 4 × 12 × 12 × 1. It means that
the numbers of neurons were 4, 4, 12, 12, and 1 for the input layer, the
first, second, and third hidden layers and the output layer, respectively.
The tangent hyperbolic and logarithmic sigmoid activation functions
were used in the first hidden layer, and the second and third hidden
layers, respectively. The linear activation function was used in the
input and output layers. Initial weights of the neural models were set
up randomly.

5. NUMERICAL RESULTS AND DISCUSSION

ANNs have been successfully used to compute the strip width or
slot width of a CPS for a given substrate material and required
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characteristic impedance by choosing an appropriate slot or strip
width. In order to obtain better performance, faster convergence,
and a simpler structure, ANN models were trained with the LM, BR,
QN, CGF and SCG learning algorithms. The training and test root
mean square (RMS) errors obtained from the first and second neural
models are given in Table 1 for the strip widths and slot widths of
CPSs, respectively. It is clear from Table 1 that the results of the
neural models trained by the LM and BR algorithms are better than
those of the neural models trained by QN, CGF, and SCG algorithms.
Among the neural models, the worst result was obtained from the
neural model trained using the SCG algorithm. The RMS error values
clearly show that the neural models can be used in calculating the
physical dimensions of CPSs.

Table 1. Training and test RMS errors of neural models.

First neural model Second neural model 
Learning 

algorithms 
RMS errors in 

training for 
W ( �µm) 

RMS errors in 
testing for 
W ( �µm) 

RMS errors in 
training for 

S ( �µm) 

RMS errors in 
testing for 

S ( �µm) 
LM 4360 0.007693 0.000441 0.007861
BR 0832 0.001815 0.004085 0.022049
QN 0029 0.106599 0.105271 0.685054

CGF 4361 0.037889 0.962608 0.265909
SCG 0000 0.278000 1.723964 1.080720

0.00
0.00
0.06
0.40
1.36

In order to validate the neural models for CPS synthesis,
comprehensive comparisons have been made. In these comparisons,
the results obtained from the first and second neural models trained
by LM algorithm are compared with three other approaches from the
literature. These are the results of the respective quasi-static analysis
[6], and two CAD models [10, 12] which are known as the best accurate
tools for CPS synthesis.

Comparisons among the results of first neural model, the synthesis
formula proposed by Deng et al. [10], the synthesis formula proposed
by Yildiz et al. [12], and the quasi-static analysis [6] are presented
graphically in Fig. 3. This figure shows the contours of normalized
slot width S/H versus normalized strip width W/H for various
characteristic impedance values for a given substrate material (εr =
12.9 and H = 200µm). Similar comparisons are made for the second
neural model; the results of the synthesis formulas [10, 12] and quasi-
static analysis [6], and obtained contours are shown in Fig. 4 for
various characteristic impedance values for a given substrate material
(εr = 12.9 and H = 200µm). In these figures, the validations of
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Figure 3. Comparisons among the neural synthesis results W (Z0, S)
using the first neural model, the synthesis results W (Z0, S) of Deng et
al. [10] and Yildiz et al. [12], and the quasi-static analysis [6] contours
of Z0(S,W ), with εr = 12.9 and H = 200µm.

Figure 4. Comparisons among the neural synthesis results S(Z0,W )
using the second neural model, the synthesis results S(Z0,W ) of Deng
et al. [10] and Yildiz et al. [12], and the quasi-static analysis [6] contours
of Z0(S,W ), with εr = 12.9 and H = 200µm.
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Figure 5. Comparisons among the characteristic impedances
calculated by using the first synthesis neural model Z0(W, εr, H) for a
given S; the second synthesis neural model Z0(S, εr, H) for a given W ;
and the quasi-static analysis [6] Z0(W,S), with εr = 10.2.

the presented neural models are considered for all possible values of
normalized strip width W/H and normalized slot width S/H within
the ranges of W/H ≤ 10/(1 + ln εr) for the first neural model, and
S/H ≤ 10/[3(1 + ln εr)]for the second neural model. It is apparent
from Figs. 3 and 4 that the results of the neural models are in excellent
agreement with those of the quasi-static analysis, whereas there is
no good agreement between the results of quasi-static analysis and
the synthesis CAD models [10, 12], especially in the extreme ranges
of the normalized strip width W/H and normalized slot width S/H.
A similar perfect agreement between the results of the neural models
and quasi-static analysis is also achieved for all CPS structures to be
designed with different electrical parameters and physical dimensions.
It was found that the average percentage error values of the neural
models, the synthesis formulas proposed by Deng et al. [10], by Yildiz
[11], and by Yildiz et al. [12] are 0.24%, 0.84%, 1.43%, and 1.25% for
all possible 10614 CPS structures, respectively. These results certainly
show that the proposed neural models for CPS synthesis are more
accurate than the synthesis formulas available in the literature.

In order to illustrate the self-consistent agreement between the
first and second neural models and the validation of the neural models,
another comparison is made for the characteristic impedances of CPSs
having different substrate materials and different normalized strip
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width W/H values. In this comparison, the results obtained from
the first and second neural models are compared with the results of
quasi-static analysis. The results obtained from the first and second
neural models, and the quasi-static analysis are given in Fig. 5 for the
characteristic impedance of a CPS having two different W/H values
with respect to the shape ratio S/(S+2W ). It is seen from Fig. 5 that
the results of the proposed first and second neural models are very
close to each other, and there is an excellent agreement between the
results of neural models and the results of the quasi-static analysis.

Finally, the self-consistent agreement between the first and second
neural models has been clearly seen throughout the comparisons.
Although the neural models proposed in this work are trained with
the data sets obtained from respective quasi-static analysis, an earlier
investigation [7] showed that they can be used for the design of GaAs
monolithic MICs up to a frequency range of 20 GHz and even 40 GHz.
This is why the proposed neural models for CPS synthesis are valid for
this frequency range.

6. CONCLUSION

Accurate and simple neural models are presented to compute the
physical dimensions of CPSs for the required design specifications.
These models have been developed by training the neural network
with the numerical results of quasi-static analysis in the required
ranges of model input variables. Neural models were trained by using
five different learning algorithms to obtain better performance and
faster convergence with a simpler structure. It was shown that the
results of the neural models trained by the LM and BR algorithms
are better than those of the neural models trained by QN, CGF, and
SCG algorithms. The neural results have also been compared with
the results of the respective quasi-static analysis and the synthesis
formulas available in the literature. The proposed neural models for
CPS synthesis are more accurate than the synthesis formulas available
in the literature. The accuracy of the neural models trained by LM
algorithm was found to be better than 0.24% for 10614 CPS samples
having different electrical properties and geometrical dimensions. The
neural models allow designers to obtain the physical dimensions of
CPSs for the required design specifications in a very simple and
convenient way, rather than using the iteration approach of applying
conventional design equations. The method proposed here can easily
be applied to other microwave problems. The high-speed real-time
computation feature of the neural models recommends their use in
MIC or monolithic MIC programs.
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