1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
2. Engheta, N., "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576
3. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B., Vol. 65, No. 4, 144440, 2002.
doi:10.1103/PhysRevB.65.144440
4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025
5. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1126/science.1105371
6. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, "Experimental observation of true left-handed transmission peaks in metamaterials," Optics Letters, Vol. 29, No. 22, 2623-2625, 2004.
doi:10.1364/OL.29.002623
7. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic threedimensional left-handed metamaterials," Phys. Rev. B., Vol. 71, No. 12, 121103, 2005.
doi:10.1103/PhysRevB.71.121103
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
9. GarcÃa-GarcÃa, J., F. MartÃn, J. D. Baena, R. Marques, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys., Vol. 98, No. 3, 033103, 2005.
doi:10.1063/1.2006224
10. Gay-Balmaz, P., C. Maccio, and O. J. F. Martin, "Microwire arrays with plasmonic response at microwave frequencies," Appl. Phys. Lett., Vol. 81, No. 15, 2896-2898, 2002.
doi:10.1063/1.1513663
11. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439
12. Kafesaki, M., Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt., No. 7, 12, 2005.
doi:10.1088/1464-4258/7/2/002
13. Padilla, W. J., "Group theoretical description of artificial magnetic metamaterials utilized for negative index refraction," http://xxx.lanl.gov/abs/cond-mat/0508307., 0508.
14. Baena, J. D., L. Jelinek, R. Marques, and J. Zehentner, "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design," Appl. Phys. Lett., Vol. 88, 134108, 2006.
doi:10.1063/1.2190442
15. Marques, R., J. Martel, F. Mesa, and F. Medina, "A new 2D isotropic left-handed metamaterial design: theory and experiment," Microwave and Opt. Tech. Lett., Vol. 35, 2002.
16. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 2001.
doi:10.1126/science.1058847
17. Ferraro, J. R., Introductory Group Theory, Plenum Press, 1969.
18. Carter, R. L., Molecular Symmetry and Group Theory, John Wiley & Sons, 1998.
19. Hatfield, W. E. and W. E. Parker, Symmetry in Chemical Bonding and Structure, Charles E. Merrill, 1974.
20. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
21. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left-handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 35, 316-333, 2002.
doi:10.2528/PIER02052409
22. Katsarakis, N., T. Koshny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, "Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials," Phys. Rev. B., Vol. 70, 2004.
doi:10.1103/PhysRevB.70.201101
23. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404
24. Lindell, I. V., et al. Electromagnetic Waves in Chiral and Bi- Isotropic Media, Artech House, 1994.
25. Sihvola, A., Electromagnetic Mixing Formulas and Applications, T. J. Internation, 1999.
26. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas and Propagat., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622
27. Bridgeman, A., http://www.hull.ac.uk/php/chsajb/symmetry/.
28. Kettle, S. F. A., Symmetry and Structure, John Wiley & Sons, 1995.
29. Wongkasem, N.A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Computational and experimental analysis of thz double negative metamaterials,'' Special Session on Smart EM materials and applications," 2005 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, 3-8, 2005.
30. Jenkins, F. A. and H. E. White, Fundamentals of Optics, 4E, 1976.