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Abstract—Novel isotropic planar and three-dimensional negative
refractive index (NRI) metamaterial (MTM) designs consisting of
periodically arranged cross structures are developed in the terahertz
(THz) frequency regime using group theory. The novel designs
not only avoid magnetoelectric coupling but also enable a simplified
fabrication process. Using Finite-difference Time-Domain (FDTD)
simulations, the design exhibits an NRI passband which is in good
agreement with the S-parameters obtained from Fresnels equation.
Cross-polarized fields are used to characterize the magnetoelectric
coupling mechanism and determination of material properties of the
medium via group theory aid in the characterization of the isotropy
of the structure. Numerical simulations of a wedge composed of the
proposed metamaterials prove the negative refractive index of the
models.

1. INTRODUCTION

A negative index metamaterial (NIM) is an artificial material with a
negative index of refraction. This property leads to many promising
applications such as perfect lenses [1], subwavelength resonators [2],
and novel optical filters. Typically, the structures utilized for NIM
are bi-anisotropic [3], having a broken spatial symmetry, which
results in magnetoelectric coupling having directional dependences.
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Furthermore, many of the previously designed single negative and NIM
structures [4–6] are anisotropic, i.e., their properties are directionally
dependent. Since these extra properties can destroy the desired
negative index (NI) behavior [7] and transmission properties, it is
necessary to design isotropic NIMs with no cross-coupling.

There has been an effort in previous years to design isotropic
NIMs. A split ring resonator (SRR) [8] was originally proposed to
provide negative permeability that can be used in the construction
of NIMs. Most SRRs suffer from anisotropy [3, 9] and also show
evidence of cross-coupling [3, 10–11]. Recently, there has been some
work devoted to developing isotropic SRRs [3, 9, 12–14]. By combining
artificial dielectrics with magnetic metamaterials, two-dimensional [15]
and three-dimensional [7] isotropic left-handed metamaterials have
also been reported. Marques et al. [15] introduced an arrangement
of a broadside-coupled SRR (BC-SRRs) array and metallic plates,
while Koschny et al. [7] used fully symmetric multigap single-ring
SRRs and crossing continuous wires for three-dimensional NIM. These
models, based on the spilt-ring and wire design, contain two separate
structures. The BC-SRRs also show evidence of cross-coupling. The
3D design of [7] successfully eliminates the cross polarization terms;
however, their 25 piece construction is difficult to fabricate.

In this paper, using group theory, we propose novel isotropic
planar and three-dimensional negative index metamaterial models,
consisting of “cross” structures. The proposed material also has the
added advantage of not possessing any cross-coupling and due to its
simple structure, is also easy to fabricate. Group theory is used to
derive material properties which are then used to prove the isotropy
and lack of coupling within the material. Moreover, the co- and cross-
polarized fields are characterized to gain insight into the magneto-
electric coupling mechanisms. The proof of the negative refractive
index of the proposed structure, using a wedge model [16] of the
novel design, is also demonstrated. Analysis and results are shown
in the terahertz (THz) frequency regime, although this approach can
be scaled to other frequency regimes (microwave to optical).

2. GROUP THEORY

Group theory, a formalism used to classify the symmetry of molecules,
has been used in a limited fashion to identify the isotropy of magnetic
resonators of metamaterials [13, 14]. In chemistry, the symmetry
of molecules and solids has been characterized by Group Theory in
order to develop an understanding of bonding and physical properties.
As an example, Group Theory has been used to characterize many
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molecules’ bonding and non-bonding molecular orbitals, which has led
to descriptions of allowed and disallowed electronic transitions between
molecular orbitals within those molecules that have been subsequently
confirmed by spectroscopic experiments. Beyond its application in
Chemistry, it has been used to classify functions according to how
the structures behave when the symmetry operations of a point
group are performed upon them [17]. The symmetry of a structure
can be described in terms of the complete collection of symmetry
operations it possesses. Regardless of the number of operations, five
main operations will always be used [18]. These are termed: (1)
identity, “E”, (2) rotation (sometimes called proper rotation), “Cn”,
(3) reflection, “σ”, (4) inversion, “i”, and (5) a two-part operation
called rotation-reflection (or improper rotation), “Sn”. The operations
are performed on: (1) the object itself, (2) a line (rotation axis or
proper axis), (3) a plane (reflection plane or mirror plane), (4) a point
(inversion center or center of symmetry), and (5) a line (improper axis
or alternating axis). All the corresponding symmetry elements will
pass through a common point at the center of the structure. Based
on these operations, the point groups can be categorized into nonaxial
groups (Cn, Dn, Cnv, Cnh, Dnh, Dnd, Sn) cubic groups and linear groups
(C∞v, D∞h) [18, 19].

After the structure is categorized into a group, an electromagnetic
(EM) basis can be assigned to the structure by applying a wave
polarization concept. By investigating and transforming this basis
according to the symmetries of the group, the EM mode, spatial
independence, magnetoelectric and cross-couplings can be established.

3. ISOTROPIC APPROACH

Negative index metamaterials can be obtained through a combination
of negative permeability and negative permittivity materials. Many
NIMs (from GHz to THz frequencies) have used SRR/wire composites
[20–23]. Artificial dielectrics, which include the wire structure [8] as an
example, normally generate exceptionally low cross-polarization [14].
On the other hand, a basis set of the SRR is in the C2v point group
[13] has been shown to be bi-anisotropic. Hence, both the negative
permeability artificial medium (i.e., the SRR) and the NIM that is
designed with it, show the effects of bi-isotropy and bi-anisotropy [3].
Bi-anisotropic media have a broken spatial symmetry. The constitutive
relations for the bi-anisotropic materials are governed by the following
four medium dyadics [24] two co-polarization dyadics, permittivity
ε and permeability µ, and two cross-polarization (magnetoelectric)
dyadics ξ and ζ [25]. Without magnetoelectric coupling, ξ and ζ vanish
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in anisotropic materials. For a bi-isotropic (BI) medium, the dyadics
are multiples of the unit dyadic, and therefore they can be expressed
in terms of four scalar coefficients ε, µ, ξ, and ζ. The BI media are
magnetoelectric, but are not sensitive to field direction. The simplest
form of media is an isotropic material which has only an ε and µ with
no differential spatial direction.

In this section, we will apply group theory to the design of the
isotropic NIM using artificial dielectrics, composed of capacitively
loaded strips, CLS, [26] and magnetic resonators [13]. The isotropic
magnetic metamaterial (MTM) will be modified and combined with
the CLS to obtain a NIM.

3.1. Isotropy of Artificial Dielectric

The CLS can be categorized in an orthorhombic type (D2h point
group). Fig. 1 shows the transmission coefficients of the discontinuous
wire (rod) and the CLS. The stopbands appear at 1440 GHz and
920 GHz, respectively. The linewidth and length of the basic rod
structure are 8 and 88 micron. Adding extra capacitance with 56
micron length bars, CLS has a lower stopband.
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Figure 1. (a) discontinuous wire (solid). (b) CLS (dotted).

With the D2h point group, the symmetry of the CLS contains eight
elements: [E, C2(z), C2(y), C2(x), i, σ(xy), σ(xz), σ(yz)] as illustrated
in Fig. 2.

The character table for the D2h point group is shown in Table 1.
All possible sets of characters (irreducible representations) for a

given point group are shown in this character table. The columns are
labeled according to the number and type of operations forming each
class. The labels of the irreducible representations are A (or B) for
one-dimensional representations. Two-dimensional representations are
labeled E, and three-dimensional ones are labeled T . When inversion
symmetry is present, it is customary to use “g” and “u” as subscripts
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Figure 2. Eight symmetry elements of CLS (a) Identity, E, (b)–
(d) symmetry axes in z, y, and x by rotating 180 degrees named as
C2(z), C2(z) and C2(z), (e) inversion center, i, (f)–(h) mirror plane
symmetries for x-y, x-z, and y-z planes named as σ(xy), σ(xz), σ(yz).

Table 1. Character table for the D2h point group.

D2h E C2(z) C2(y) C2(x) i 
(xy) (xz) (yz) 

Linear Quadratic

Ag 1 1 1 1 1 1 1 1  x2, y2, z2 

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy 

B2g 1 -1 1 -1 1 -1 1 -1 Ry xz 

B3g 1 -1 -1 1 1 -1 -1 1 Rx yz 

Au 1 1 1 1 -1 -1 -1 -1    

B1u 1 1 -1 -1 -1 -1 1 1 z   

B2u 1 -1 1 -1 -1 1 -1 1 y   

B3u 1 -1 -1 1 -1 1 1 -1 x   

σ σ σ

for even and odd numbers, respectively [18]. The other columns list
the coordinates, quadratic forms of coordinates, and rotations.

Some representations reveal the wave polarization which can be
seen from the second to last column in Table 1. B1u, B2u, and B3u show
the polarized light along the z, y, and x axis, respectively, which means
B1u, B2u, B3u have the electric field in the z, y, and x directions. On
the other hand, B1g, B2g, B3g have the magnetic field polarized along
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the z, y, and x axis, respectively, according to the rotation function
Rα. However, there is only a certain number of distinct ways in which
a function can behave when subjected to the symmetry operation of a
particular point group. We can generate the representation for the CLS
for the D2h point group by the concept of wave polarization together
with the molecular orbital group theory (MOGT). First, arrows will be
marked to represent directions of currents due to an external electric
field and then we will find the representation of a set of the orbitals
for each of the symmetry operations.

Figure 3. Behavior of CLS under the symmetry elements (a) E, (b)
C2(z), (c) C2(y), (d) C2(x), (e) i, (f) σ(xy), (g) σ(xz), and (h) σ(yz).

Under the eight symmetry operations illustrated in Fig. 3 acting
upon the CLS structure, the polarized light behavior can be observed
by the location and direction of the arrows. If the arrow is in the
same direction following the symmetry operation, we designate it as
“1”, and if the arrow is still in the same location but in the opposite
direction, it is designated as “−1”. If the arrow does not remain in
the same location following the symmetry operation, it is designated
as “0”. [27]. For the identity symmetry in Fig. 3(a), the arrows are
unchanged so the character for each is +1 giving a total of +6. None of
the arrows is the same after applying the C2(z), C2(x), i, σ(xy), σ(xz)
symmetries, giving 0 for a total. And, there are two arrows which are
unchanged in C2(y), σ(yz) giving a total of +2. The numbers of each
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symmetry element of the CLS are then:
Now we can assign a basis set to the model and see how this

basis set transforms under the symmetry operations to represent an
electrical activity of the structure. The basis set can be calculated by:

ni =
1
n

∑

c

gcχiχr (1)

where h is the order of the group (h = 8 in this case), and is the
total number of symmetry operations [28]. The summation is over
all types (classes) of symmetry elements in the group. For each
type of symmetry element, the product of three numbers is required:
gc is the number of symmetry elements of that type (1st row of
Table 1), χi represents the characters for the irreducible representation
in question (Table 1), and χr refers to the characters for the irreducible
representation (Table 2). Using Equation (1), the representation
reduces to 2Ag, B1g, B2u, and B3u or ΓCLS = 2Ag+B1g+2B2u+B3u.
Thus, there are three linear modes that include a magnetic mode (B1g),
Hz, and two electric modes (B2g and B3g), Ey, and Ex. With no
occurrences of the rotation and linear basis functions being together,
this can confirm that there is neither a direction dependence nor
magnetoelectric term. Therefore, the CLS categorized in D2h point
group can be straightforwardly adjusted to fit in any isotropic NIM
designs. Note that the number of irreducible representatives should
come out as zero or as a positive integer; if it does not, then either the
formula has been used incorrectly or the reducible representation has
been generated incorrectly or both.

Table 2. Irreducible representations for CLS.

D2h E C2(z) C2(y) C2(x) i 
(xy) (xz) (yz) 

CLS
 6 0 2 0 0 6 0 2 Γ

σ σ σ

The CLS of the same dimension as mentioned before in Fig. 1 will
be used to construct the novel isotropic NIM. According to the location
of the stopband, we can presume that the negative index pass band of
the NIM should be in the stopband interval of the CLS.

3.2. Artificial Magnetic Material Design

The planar magnetic MTM, introduced by Padilla [13], is shown in
Fig. 4(c). This structure is not sensitive to field direction, does not
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Figure 4. SRR with (a) one gap, (b) two gaps, and (c) four gaps.

possess magnetoelectric coupling and is therefore isotropic. Four gaps
are presented to increase the symmetry. However, the transmission
property (S parameters) of such designs change from that of the regular
SRR according to the specific modifications made- e.g., breaking the
structure resulting in extra gaps. Thus, the study of this structure
is required in designing the NIM. The extra gaps act like capacitors
in series, leading to a considerable lowering of the total capacitance
and thus to an increase of ωm. The transmission coefficients of three
SRRs which have one, two and four gaps are illustrated in Fig. 4.
The magnetic resonances appear at 430 GHz, 880 GHz, and 1,680 GHz,
respectively, where the width and length of all the SRRs are 88 micron,
and the line width and gap are both 8 micron. These results are
consistent with those of Kafesaki et al. [12] and show that the resonance
frequency of an n-gap SRR is approximately “n” times higher than
that from a one-gap SRR. Although the resonance frequency may be
adjusted by decreasing the gap size or adding extra bars to increase
the capacitance, the strength of the magnetic resonance and the width
of the “µ < 0” regime may be affected by the modification. Therefore,
this shift of the resonance, due to the additional introduction of gaps,
must be considered when the structure is modified in the NIM design.

3.3. Isotropic NIM by Group Theory

For a two-dimensional NI structure, our first design, the two
separate structures (electric and magnetic response structures) will
be joined to produce only a single piece. This helps to reduce
not only the couplings which may diminish or even destroy the NI
behavior, but also any potential misalignment in the manufacturing
process which becomes a factor when two sets of structures are
involved. To ensure the elimination of the off-diagonal permeability
and permittivity terms and two cross-polarization (magnetoelectric)



Progress In Electromagnetics Research, PIER 63, 2006 303

dyadics in the response functions, one should consider point groups
with no appearance of linear basis functions and rotational function
Rα at the same time and with little or no occurrences of linear
functions. The point group D4h (tetragonal) will be used. This
sixteenth order tetragonal point group has sixteen symmetry elements
[E, 2C4, C2, 2C ′

2, 2C ′′
2 , i, 2S4, σh, 2σv, 2σd]. No linear basis functions

and rotational function occurs in the same irreducible representative.
In Fig. 5, the D4h symmetry is represented by three structures: a
stereograph, a rudimentary molecule structure, and the novel one piece
isotropic NIM, a “cross” model. The cross, in Fig. 5(c), actually,
combines a CLS and a flipped CLS. Note that a location of the NI
passband can be adjusted by changing the gap size between the bars.
Yet, the gaps can not be too wide, which will cause a high magnetic
response and thus may be too high to correspond to the electric
response.

Figure 5. (a) Stereograph and (b) Molecule structure of the D4h point
group (c) Planar cross model.

Following the same steps as for the CLS, the irreducible
representations of the planar cross model can be obtained as shown
in Table 3.

Table 3. Irreducible representations for cross.

D4h E 2C4 C2 2C2' 2C2'' i 2S4 h  2 v  2 d 

CROSS 8 0 0 0 0 0 0 8 0 0 

σ σ σ

Γ

Using the reduction formula (1), the cross model is represented as:
ΓCROSS = A1g + A2g + B1g + B2g + 2Eu. With the only magnetic
mode of A2g and the identical electric fields Ex and Ey along the x
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and y axes of the electric mode in the Eu mode, neither extra coupling
nor direction dependence terms occur in this planar cross model.

4. NUMERICAL RESULTS AND VALIDATION OF
ISOTROPIC NIM

A Finite Difference Time Domain (FDTD) model with periodic
boundary conditions, was implemented to examine the transmission
property of the cross structure [29]. The normalized electric fields
with respect to the number of time steps of co- (Ez) and cross- (Eφ)
electric field components are shown in Fig. 6. The incident and the
reflected fields are collected at port 1 while the transmitted wave is
gathered at port 2.
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Figure 6. Normalized co-E component (solid line) and cross-E
component 1 (dotted line) of (a) incident field, (b) port 1, and (c)
port 2.

The incident electric field along the z-axis (solid line in Fig. 6(a))
is a Gaussian excitation, launched at port 1. As expected, the cross-
polarized incident field (dotted line in Fig. 6(a)) is zero for all time.
The co-polarized E-field component (solid line in Fig. 6(b)) at port 1,
with 95.4% of the starting peak intensity, combines the incident and
reflected waves in the core direction. The transmitted field at port 2 (in
Fig. 6(c)) has 71.0% of peak intensity at its highest point. Conversely,
both transmitted and reflected waves of the cross-polarized E-field
component are extraordinarily low with the highest values only at 2.1%
and 1.9% of peak intensity, respectively (dotted lines in Fig. 6(b) and
(c)).

The low values of the cross-polarized E-field component, Eφ,
signify that there is no cross-polarized transmission coefficient at
all frequencies, as predicted. The negative refractive index band is
predicted to be centered at 950 GHz and can be seen in the transmission
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Figure 7. Transmission coefficient of the cross model with a 8 micron
gap.

coefficient of the cross model shown in Fig. 7. Note that a location of
the NI passband can be adjusted by changing the gap size between
the bars. Yet, the gaps cannot be too wide, which will cause a high
magnetic response and thus may be too high to correspond to the
electric response.

In order to validate the existence of an NI band, a FDTD
simulation on a wedge-shaped structure was constructed at the
predicted NIM band (950 GHz, point c in Fig. 7) and at 3 other
frequencies which are outside of this band, namely: 700 GHz, 900 GHz,
and 1200 GHz (as shown in Fig. 7 as points (a), (b), and (d)
respectively). We use a simulation of the Snell’s law experiment on
a wedge-shaped structure [16], which is one of the most intuitive
verifications of negative index metamaterials. The base and the height
of the wedge model have six and three sets of the cross structure,
respectively. The number of the crosses decreases by two in the
consecutive rows to construct the 26 degree angle. According to the
perfect magnetic conductor (PMC) set up on the top and bottom, only
one layer of the MTMs on the direction of propagation is required.
The other two sides where the MTMs are placed have perfect electric
conductor (PEC) boundaries. The remaining boundaries are set by
using a perfectly matched layer (PML) boundary condition to absorb
the radiated fields. Fig. 8 demonstrates the propagation directions
of the NIM in 26◦ wedge-shaped model. Fig. 8(a)–(b) illustrates
the positive index values at 700 GHz and 1200 GHz, a stop band at
900 GHz, and the negative index at 950 GHz.

The gray lines are drawn to set the wedge surface and the line
normal to that surface. The white lines demonstrate the direction
of the wave after propagating through the 26◦ wedge metamaterials.
Fig. 8(a) and (d) show the propagating wave with positive angles
(positive refractive index) before and after the NI band at 700, and
1200 GHz, respectively. Corresponding to the stopband, indicated by
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Figure 8. Propagation directions in Wedge-shaped models: (a) Wedge
model with positive index at 700 GHz (b) Wedge model with a stop
band at 900 GHz (c) Wedge model with negative index at 950 GHz and
(d) Wedge model with a positive index at 1200 GHz.

the second arrow in Fig. 7, there is almost no transmission at 900 GHz
in Fig. 8(b). The wedge model illustrates the reversal of Snell’s Law as
a result of the negative index (transmission angle = −18◦) in Fig. 8(c).
Using Snell’s law, the index of refraction of the cross model can be
calculated as, n = −0.705 ± 0.1. In order to validate the correct
retrieval of the index of refraction at frequencies at points, (a), (c),
and (d), we calculate the analytical form of the S21 parameter [30]
using the retrieved indices of refraction and compare with the FDTD
results, as shown in Fig. 7. The analytical values of S21 are plotted in
Fig. 7 at point (a), (c) and (d), indicated by ‘x’. The results, at 700,
950, and 1200 GHz, respectively, show good agreement, i.e., less than
−5 dB, confirming the correct characterization of our model.

5. THREE-DIMENSIONAL NIM

Among four cubic point group candidates i.e., Th, Td, Ih, and Oh,
which are free from magnetoelectric response [13], we propose the
Oh symmetry or cubic with 48 orders, one of the simplest possible
symmetries for our 3D model. The character table of the Oh point
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group is shown in Table 4.

Table 4. Character table for the Oh point group.

Oh E 8C3 6C2 6C4 3C2' i 6S4 8S6 3 h 6 d  Linear  Quadratic 

A1g 1 1 1 1 1 1 1 1 1 1   x2+y2+z2 (=r2) 

A2g 1 1 -1 -1 1 1 -1 1 1 -1     

Eg 2 -1 0 0 2 2 0 -1 2 0   (3z2-r2, x2-y2) 

T1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx, Ry, Rz
)   

T2g 3 0 1 -1 -1 3 -1 0 -1 1   (xy, yz, zx) 

A1u 1 1 1 1 1 -1 -1 -1 -1 -1     

A2u 1 1 -1 -1 1 -1 1 -1 -1 1     

Eu 2 -1 0 0 2 -2 0 1 -2 0     

T1u 3 0 -1 1 -1 -3 -1 0 1 1 (x, y, z)   

T2u 3 0 1 -1 -1 -3 1 0 1 -1     

σ σ

Three structures which all have the symmetry of this Oh point
group are shown in Fig. 9. Fig. 9(a) shows a 3D cubic object. Fig. 9(b)
shows a rudimentary representation of the 3D structure of the molecule
SF6 , where the S atom occurs in the center bonded to the 6 external
F legend atoms. Finally, in Fig. 9(c) the isotropic 3D cross model is
shown.

Figure 9. (a) 3D object (b) Molecule structure of the Oh point group
(c) Isotropic cubic array of cross model.

The 3D cross model is represented by: Γ3D-CROSS =
1A1g + 1A2g + 2Eg + 1T1g + 1T2g + 2T1u + 2T2u. There are four
three-dimensional representations: T1g, T2g, T1u, and T2u. However,
only T1g and T1u independently provide the magnetic and electric fields
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polarized along the three axes. T1g states three identical magnetic
fields in three dimensions while T1u presents three identical electric
fields. Hence, the 3D cross model does not generate either the two co-
polarization dyrics (off-diagonal permittivity and permeability terms)
or the two cross-polarization (magnetoelectric) dyrics. Because it
has directional independence with no magnetoelectric coupling, the
structure is confirmed to be isotropic.

6. CONCLUSION

We utilize molecular symmetry and group theory to identify directional
dependence and magnetoelectic coupling based on the occurrence of the
four material parameter dyrics of the metamaterials in the THz regime.
We propose novel isotropic negative index metamaterial models
for both the planar and three-dimensional versions. Transmission
coefficients, co- and cross-polarization terms from FDTD simulations
are used to validate the design. The simulated wedge model is used
to validate the negative index of refraction of the designed structures.
Values of the S-parameters obtained from analytical equations using
the extracted index of refraction values from the wedge studies, further
support the transmission properties and the extraction method.

REFERENCES

1. Pendry, J. B., “Negative refraction makes a perfect lens,” Phys.
Rev. Lett., Vol. 85, 3966–3969, 2000.

2. Engheta, N., “An idea for thin, subwavelength cavity resonators
using metamaterials with negative permittivity and permeability,”
IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1,
10–13, 2002.

3. Marqués, R., F. Medina, and R. Rafii-El-Idrissi, “Role of bian-
isotropy in negative permeability and left-handed metamaterials,”
Phys. Rev. B., Vol. 65, 144440, Apr. 2002.

4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith,
J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic
response from artificial materials,” Science, Vol. 303, 1494–1496,
2004.

5. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and
C. M. Soukoulis, “Magnetic response of metamaterials at 100
terahertz,” Science, Vol. 306, 1351–1353, 2004.

6. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis,
and E. Ozbay, “Experimental observation of true left-handed



Progress In Electromagnetics Research, PIER 63, 2006 309

transmission peaks in metamaterials,” Optics Letters, Vol. 29,
No. 22, 2623–2625, Nov. 2004.

7. Koschny, Th., L. Zhang, and C. M. Soukoulis, “Isotropic three-
dimensional left-handed metamaterials,” Phys. Rev. B., Vol. 71,
No. 12, 121103, 2005.

8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stew-
art, “Magnetism from conductors and enhanced nonlinear phe-
nomena,” IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11,
2075–2084, 1999.
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