Vol. 63
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-07-29
Simulations of the Left-Handed Medium Using Discontinuous Galerkin Method Based on the Hybrid Domains
By
Progress In Electromagnetics Research, Vol. 63, 171-191, 2006
Abstract
The increasing interest in electromagnetic effects in the Left-Handed medium (LHM) requires the formulae capable of the full analysis of wave propagation in such materials. First, we develop a novel technique for discretization of the Lorentz medium model. In order to overcome the instability inherent in the standard perfectly matched layer (PML) absorbing boundary condition (ABC), we derive the modified PML ABC which can be extended to truncate the boundary of LHM. Then a convergent high-order accurate scheme based on triangle domains, discontinuous Galerkin method (DGM), is extended to the new DGM based on hybrid domains, triangle domains and quadrilateral domains. Finally, we adopt the new DGM and modified PML formulations to analysis the electromagnetic phenomena in the LHM. The simulation results show accuracy and stability of the proposed scheme.
Citation
Yan Shi, and Chang-Hong Liang, "Simulations of the Left-Handed Medium Using Discontinuous Galerkin Method Based on the Hybrid Domains," Progress In Electromagnetics Research, Vol. 63, 171-191, 2006.
doi:10.2528/PIER06050803
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-515, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714

5. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

6. Karkkainen, M. K., "Numerical study of wave propagation in uniaxially anisotropic lorentzian backward-wave slabs," Physical Review E, Vol. 68, 2003.

7. Karkkainen, M. K. and and S. I. Maslovski, "Wave propagation, refraction, and focusing phenomena in Lorentzian double-negative materials: a theoretical and numerical study," Microwave Opt. Technol. Lett., Vol. 37, 4-7, 2003.
doi:10.1002/mop.10807

8. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 2001.
doi:10.1103/PhysRevE.64.056625

9. Correia, D. and J. M. Jin, "3D-FDTD-PML analysis of lefthanded metamaterials," Microwave Opt. Technol. Lett., Vol. 40, 201-205, 2004.
doi:10.1002/mop.11328

10. Berenger, J. P., "A perfectly matched layer for absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

11. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media," Electromagn., Vol. 16, 399-415, 1996.

12. Cockburn, B. and C. W. Shu, "The local discontinuous Galerkin finite element method for convection-diffusion systems," SIAM J. Numer. Anal., Vol. 35, 1998.

13. LeSaint, P. and P. A. Raviart, "On a finite element method for solving the neutron transport equation," Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974.

14. Hesthaven, J. S. and T. Warburton, "High-order nodal methods on unstructured grids. I. Time-domain solution of Maxwell's equations," J. Comput. Phys., Vol. 181, 186-221, 2002.
doi:10.1006/jcph.2002.7118

15. Hesthaven, J. S. and T. Warburton, "High-order accurate methods for time-domain electromagnetics," Comput. Model. Engin. Sci., Vol. 28, 259-279, 2003.

16. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," J. Comput. Phys., Vol. 200, 549-580, 2004.
doi:10.1016/j.jcp.2004.02.022

17. Kopriva, D., S. L. Woodruff, and M. Y. Hussaini, "Discontinuous spectral element approximation of Maxwell's equations," Discontinuous Galerkin Methods: Theory, 2000.

18. Tretyakov, S. A.I. S. Nefedov, C. R. Simovski, and S. I. Maslovski, "Advances in electromagnetics of complex media and metamaterials," NATO-ARW Proceedings, 2002.

19. Dong, X. T., X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, "Perfectly matched layer-absorbing boundary condition for lefthanded materials," IEEE Microwave Wireless Compon. Lett., Vol. 14, 301-303, 2004.
doi:10.1109/LMWC.2004.827104

20. Cummer, S. A., "Perfectly matched layer behavior in negative refractive index materials," IEEE Antenna Wireless Propagat. Lett., Vol. 3, 172-175, 2004.
doi:10.1109/LAWP.2004.833710

21. Cummer, S. A., "A simple, nearly perfectly matched layer for general electromagnetic media," IEEE Microwave Wireless Compon. Lett., Vol. 13, 128-130, 2003.
doi:10.1109/LMWC.2003.810124

22. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equation with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, 599-604, 1994.

23. Fan, G. X. and Q. H. Liu, "A well-posed PML absorbing boundary condition for lossy media," IEEE Antennas Propagation Soc. Int. Symp., Vol. 3, 2-5, 2001.

24. Berenger, J. P., "On the reflection from Cummer's nearly perfectly matched layer," IEEE Microwave Wireless Compon. Lett., Vol. 14, 334-336, 2004.
doi:10.1109/LMWC.2004.829272

25. Abarbanel, S. and D. Gottlieb, "A mathematical analysis of the PML method," J. Comput. Phys., Vol. 134, 357-363, 1997.
doi:10.1006/jcph.1997.5717

26. Hesthaven, J. S., "From electrostatics to almost optimal nodal stes for polynomial interpolation in a simplex," SIAM J. Numer. Anal., Vol. 35, 655-676, 1998.
doi:10.1137/S003614299630587X

27. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a timedomain finite-volume discretization procedure," Comput. Phys. Communications, Vol. 68, 175-196, 1991.
doi:10.1016/0010-4655(91)90199-U

28. Carpenter, M. H. and C. A. Kennedy, "Fourth order 2N-storage Runge-Kutta scheme," NASA, 1994.

29. Liu, Q. H., The PSTD algorithm: A time-domain method requiring only two cells per wavelength, Vol. 15, 158-165, '' Microwave Opt. Technol. Lett., 1997.

30. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. AP-37, 229-234, 1989.
doi:10.1109/8.18710