1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-515, 1968.
doi:10.1070/PU1968v010n04ABEH003699
2. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
3. Pendry, J. P., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, 2075-2084, 1999.
doi:10.1109/22.798002
4. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714
5. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933
6. Karkkainen, M. K., "Numerical study of wave propagation in uniaxially anisotropic lorentzian backward-wave slabs," Physical Review E, Vol. 68, 2003.
7. Karkkainen, M. K. and and S. I. Maslovski, "Wave propagation, refraction, and focusing phenomena in Lorentzian double-negative materials: a theoretical and numerical study," Microwave Opt. Technol. Lett., Vol. 37, 4-7, 2003.
doi:10.1002/mop.10807
8. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 2001.
doi:10.1103/PhysRevE.64.056625
9. Correia, D. and J. M. Jin, "3D-FDTD-PML analysis of lefthanded metamaterials," Microwave Opt. Technol. Lett., Vol. 40, 201-205, 2004.
doi:10.1002/mop.11328
10. Berenger, J. P., "A perfectly matched layer for absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159
11. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media," Electromagn., Vol. 16, 399-415, 1996.
12. Cockburn, B. and C. W. Shu, "The local discontinuous Galerkin finite element method for convection-diffusion systems," SIAM J. Numer. Anal., Vol. 35, 1998.
13. LeSaint, P. and P. A. Raviart, "On a finite element method for solving the neutron transport equation," Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974.
14. Hesthaven, J. S. and T. Warburton, "High-order nodal methods on unstructured grids. I. Time-domain solution of Maxwell's equations," J. Comput. Phys., Vol. 181, 186-221, 2002.
doi:10.1006/jcph.2002.7118
15. Hesthaven, J. S. and T. Warburton, "High-order accurate methods for time-domain electromagnetics," Comput. Model. Engin. Sci., Vol. 28, 259-279, 2003.
16. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions," J. Comput. Phys., Vol. 200, 549-580, 2004.
doi:10.1016/j.jcp.2004.02.022
17. Kopriva, D., S. L. Woodruff, and M. Y. Hussaini, "Discontinuous spectral element approximation of Maxwell's equations," Discontinuous Galerkin Methods: Theory, 2000.
18. Tretyakov, S. A.I. S. Nefedov, C. R. Simovski, and S. I. Maslovski, "Advances in electromagnetics of complex media and metamaterials," NATO-ARW Proceedings, 2002.
19. Dong, X. T., X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, "Perfectly matched layer-absorbing boundary condition for lefthanded materials," IEEE Microwave Wireless Compon. Lett., Vol. 14, 301-303, 2004.
doi:10.1109/LMWC.2004.827104
20. Cummer, S. A., "Perfectly matched layer behavior in negative refractive index materials," IEEE Antenna Wireless Propagat. Lett., Vol. 3, 172-175, 2004.
doi:10.1109/LAWP.2004.833710
21. Cummer, S. A., "A simple, nearly perfectly matched layer for general electromagnetic media," IEEE Microwave Wireless Compon. Lett., Vol. 13, 128-130, 2003.
doi:10.1109/LMWC.2003.810124
22. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equation with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, 599-604, 1994.
23. Fan, G. X. and Q. H. Liu, "A well-posed PML absorbing boundary condition for lossy media," IEEE Antennas Propagation Soc. Int. Symp., Vol. 3, 2-5, 2001.
24. Berenger, J. P., "On the reflection from Cummer's nearly perfectly matched layer," IEEE Microwave Wireless Compon. Lett., Vol. 14, 334-336, 2004.
doi:10.1109/LMWC.2004.829272
25. Abarbanel, S. and D. Gottlieb, "A mathematical analysis of the PML method," J. Comput. Phys., Vol. 134, 357-363, 1997.
doi:10.1006/jcph.1997.5717
26. Hesthaven, J. S., "From electrostatics to almost optimal nodal stes for polynomial interpolation in a simplex," SIAM J. Numer. Anal., Vol. 35, 655-676, 1998.
doi:10.1137/S003614299630587X
27. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a timedomain finite-volume discretization procedure," Comput. Phys. Communications, Vol. 68, 175-196, 1991.
doi:10.1016/0010-4655(91)90199-U
28. Carpenter, M. H. and C. A. Kennedy, "Fourth order 2N-storage Runge-Kutta scheme," NASA, 1994.
29. Liu, Q. H., The PSTD algorithm: A time-domain method requiring only two cells per wavelength, Vol. 15, 158-165, '' Microwave Opt. Technol. Lett., 1997.
30. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. AP-37, 229-234, 1989.
doi:10.1109/8.18710