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Abstract—The increasing interest in electromagnetic effects in the
Left-Handed medium (LHM) requires the formulae capable of the full
analysis of wave propagation in such materials. First, we develop a
novel technique for discretization of the Lorentz medium model. In
order to overcome the instability inherent in the standard perfectly
matched layer (PML) absorbing boundary condition (ABC), we derive
the modified PML ABC which can be extended to truncate the
boundary of LHM. Then a convergent high-order accurate scheme
based on triangle domains, discontinuous Galerkin method (DGM), is
extended to the new DGM based on hybrid domains, triangle domains
and quadrilateral domains. Finally, we adopt the new DGM and
modified PML formulations to analysis the electromagnetic phenomena
in the LHM. The simulation results show accuracy and stability of the
proposed scheme.

1. INTRODUCTION

It has been demonstrated recently that a substance studied
theoretically by Veselago [1], in which the dielectric constant ε
and magnetic permeability µ are both negative, can be attained
artificially in a metamaterial represented by a periodic medium
of metallic wires [2] and split-ring resonators (SRR’s) [3] that is
characterized by an effective permittivity εeff and permeability µeff

that can both have negative values in a certain frequency range.
Remarkably, simultaneously negative material parameters lead to
opposite directions of the Poynting vector and phase velocity vector of
plane waves propagating in the material, which shows the existence of
backward waves in double-negative (DNG) media. Three vectors �E, �H
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and �k form the left-handed triplets in DNG media, so such materials
have been termed left-handed media (LHM).

Up to now, both theoretical and experimental efforts [4–7] have
focused on the study of the dispersion relations of permittivity and
permeability. A periodic array of the thin wire medium is represented
by the frequency-dependent dielectric function

εeff (ω) = 1 −
ω2

p

ω2
(1)

in which ωp is the plasma frequency, which depends on the geometrical
parameters of the wires in a manner that allows scaling down ωp to
microwave frequencies. On the other hand, an array of split ring
resonators exhibits behavior that can be described by an effective
frequency-dependent permeability in the form

µeff (ω) = 1 − Fω2

ω2 − ω2
0 + iωΓ

(2)

The finite-difference time-domain (FDTD) method is used to
numerically simulate the LHM by most of researchers because of its
simple scheme. Ziolkowski et al. [8] has adopted the FDTD method
to directly solve Maxwell’s equations in order to study unusual EM
phenomena in the LHM. Davi et al. [9] has extended Ziolkowski’s
approach to simulate three-dimensional wave propagation problems in
the LHM. However, numerous examples have indicated that a sampling
density of at least 10–20 cells per minimum wavelength is necessary
to ensure that the FDTD method produces acceptable results even
for a small problem. For a large-scale problem, the time window
of interest is usually longer. Since the dispersion error is linear
proportional to the length of time integration, in order to maintain an
acceptable accuracy, the sampling rate must be increased accordingly.
In addition, simulations of properties and applications of the LHM
require the proper absorbing boundary condition (ABC) capable of
being extended to truncate the boundary of LHM. Among them, the
perfectly matched layer (PML) introduced by Berenger [10] has been
the most popular ABC. However, standard versions of PML [10, 11]
are inherently unstable when it is extended to truncate the boundary
of LHM without any modification.

In order to efficiently solve time-domain electromagnetic problems,
many researchers have proposed various techniques to improve the
FDTD method. Recently, the discontinuous Galerkin methods (DGM)
have attracted much attention of researchers. Being higher order
versions of traditional finite volume method [12], the DGM were
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developed initially in 1970’s for the study of neutron transport
equations [13], and have now been applied to the area of computational
fluid dynamics and the solution of Maxwell’s equations [14–17].
Discontinuous Galerkin methods can obtain better accuracy and less
phase error in solving wave propagations due to the adoption of
high order polynomials. Although the conventional DGM, like the
finite element method, use triangle domain to flexibly divide the two-
dimensional computational domain, it will result in much complexities
in modeling for some objects with the arbitrary shapes including the
simple and complex shapes.

In this paper, we firstly develop a novel technique for discretization
of the constitutive equations of LHM; in the following, we derive the
modified PML formulae which are stable for the LHM; then we extend
the conventional DGM based on the triangle domains to the new
DGM based on hybrid domains, i.e., triangle domains and quadrilateral
domains; finally we adopt the new DGM with the modified PML
formulae to analyze the unusual electromagnetic phenomena properties
of the LHM.

2. DISCRETE MODEL FOR MATERIAL EQUATIONS
OF THE LHM

2.1. Maxwell’s Equations in the LHM

We adopt the idea of the Lorentz medium used to simulate the negative
ε and µ. Note that by simply imposing ε and µ negative inside the
LHM would produce an unstable simulation, since the field at the
interface between the LHM and air media, for a matched case, would
blow up. Hence, the Lorentz medium approach is more general and
can be applied to both matched and unmatched interfaces.

The constitutive relations for a frequency dispersive isotropic
medium read as follows: {

�D = ε(ω) �E
�B = µ(ω) �H

(3)

Negative permittivity and permeability are realized with the Lorentz
medium model. The expressions for the permittivity and permeability
are of the form


ε(ω) = ε0

(
1 +

ω2
pe

ω2
oe − ω2 + jΓeω

)

µ(ω) = µ0

(
1 +

ω2
pm

ω2
om − ω2 + jΓmω

) (4)
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This model corresponds to a realization of DNG materials as mixtures
of conductive spirals or omega particles [18]. Substituting those
expressions into 2-D TMz (transverse magnetic to z) polarization
Maxwell’s equations in the frequency domain, we can obtain

jωEz =
1
ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
− Sz (5)

jωHx = − 1
µ0

∂Ez

∂y
−Gx (6)

jωHy =
1
µ0

∂Ez

∂x
−Gy (7)

where

jωSz = ω2
peEz − ΓeSz − ω2

oeRz (8)
jωRz = Sz (9)
jωGx = ω2

pmHx − ΓmGx − ω2
omFx (10)

jωFx = Gx (11)
jωGy = ω2

pmHy − ΓmGy − ω2
omFy (12)

jωFy = Gy (13)

2.2. Modified PML for LHM

In the LHM, the direction of phase velocity is contrary to the direction
of power flow because of the simultaneously negative permittivity and
permeability. In this case, standard versions of PML [10, 11] have been
shown to be numerically unstable [19, 20] when they are extended to
truncate the boundary of LHM. In order to derive the stable PML
for LHM, we adopt the Nearly Perfectly Matched Layer (NPML) [21]
based on the modified complex coordinate stretching variables.

We modify the original complex coordinate stretching variables
[22, 23] as following:

∂x⇒ 1 +
wx

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)∂x

∂y ⇒ 1 +
wy

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)∂y (14)
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Applying (14) into (5) and redefining new field variables

H̃x =
1

1 +
wy

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)Hx

H̃y =
1

1 +
wx

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)Hy

(15)

and transforming them into time domain, we can obtain the equation
of NPML as following:

∂Ez

∂t
=

1
ε0

(
∂H̃y

∂x
− ∂H̃x

∂y

)
− Sz (16)

H̃y = Hy − wxPy (17)
∂Py

∂t
= H̃y − ω2

peQy (18)

∂Qy

∂t
= Py − ω2

oeUy − ΓeQy (19)

∂Uy

∂t
= Qy (20)

H̃x = Hx − wyPx (21)
∂Px

∂t
= H̃x − ω2

peQx (22)

∂Qx

∂t
= Px − ω2

oeUx − ΓeQx (23)

∂Ux

∂t
= Qx (24)

The variable changes in (15) are not strictly correct because ws (s =
x, y) is s-dependent. Based on the approximation in derivation,
corresponding PML is called as NPML [21]. It is noted that the
performance of NPML will not be affected by the approximation [24].

Similarly for (6) and (7), new field variables in PML are defined
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as
Ẽz1 =

1

1 +
wy

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)Ez

Ẽz2 =
1

1 +
wx

jω

(
1 +

ω2
pe

ω2
oe − ω2 + jωΓe

)Ez

(25)

Introducing (14) and (25) into (6) and (7) and transforming them into
time domain, we can obtain

∂Hx

∂t
= − 1

µ0

∂Ẽz1

∂y
−Gx (26)

Ẽz1 = Ez − wyDz1 (27)
∂Dz1

∂t
= Ẽz1 − ω2

peBz1 (28)

∂Bz1

∂t
= Dz1 − ω2

oeCz1 − ΓeBz1 (29)

∂Cz1

∂t
= Bz1 (30)

∂Hy

∂t
=

1
µ0

∂Ẽz2

∂x
−Gy (31)

Ẽz2 = Ez − wxDz2 (32)
∂Dz2

∂t
= Ẽz2 − ω2

peBz2 (33)

∂Bz2

∂t
= Dz2 − ω2

oeCz2 − ΓeBz2 (34)

∂Cz2

∂t
= Bz2 (35)

It is noted that due to the adoption of approximation, the PML
formulations are weak well-posedness of the Maxwell’s equation system
[25], although the PML formulations has the unsplit-field form.
However, the property which many PML formulations have does not
appear to be an issue of practical importance in ordinary problems.
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2.3. Discontinuous Galerkin Method

We shall seek approximate solutions to Maxwell’s equations in a general
domain, Ω, containing a collection of scattering bodies. Here, we start
by assuming that the computational domain, Ω, is decomposed into
curvilinear triangle domains and quadrilateral domains, as illustrated
in Fig. 1.
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Figure 1. Mapping between the general domains and the standard
domains.

The number of grid points needed per triangle is

N =
(n+ 1)(n+ 2)

2
(36)

which also becomes the number of local unknowns. For per
quadrilateral domain, the number of grid points is

N = (n+ 1)(n+ 1) (37)
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in which n is the order of the local polynomial approximation.
We shall assume the existence of a mapping relation which maps

the standard right angle triangle to the triangle domain. Assuming
for simplicity that the triangle domain is straightsided, this mapping
is simply given as

x(r, s) = −r + s

2
v1 +

1 + r

2
v2 +

1 + s

2
v3 (38)

where v1 = (x1, y1), v2(x2, y2), v3 = (x3, y3) are the vertex coordinates
of the triangle domain. Likewise, the mapping relation between the
square and the straightsided quadrilateral is given as

x(r, s) =
1 − r

2
1 − s

2
v1 +

1 + r

2
1 − s

2
v2 +

1 + r

2
1 + s

2
v3 +

1 − r

2
1 + s

2
v4

(39)
in which v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3), v4 = (x4, y4) are
the vertex coordinates of the quadrilateral domain.

The choice of the nodal distributions inside the triangle has
received some attention recently. The distributions, allowing for
the construction of well behaved unique Lagrange polynomials up to
order 19, can be found [26]. There are exactly N grid points in
a triangle and, furthermore, the nodes along the edges are the one
dimensional Legendre-Guass-Lobatto points. Fig. 2(a) shows the grid
point distributions with n = 10, N = 66. In order to correctly connect
between quadrilateral and triangle, the nodal distributions is chosen
as Legendre-Guass-Lobatto points in the quadrilateral, as shown in
Fig. 2(b).
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Figure 2. Examples of nodal distributions in the triangle and the
quadrilateral.
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An orthonormal basis on the triangle is given as

ψ̃i(r) = P (0,0)
α1

(
2(r + 1)
(1 − s)

− 1
) (

1 − s

2

)α1

P (2α1+1.0)
α2

(s) (40)

i = α1 + nα2 −
α2

2
(−1 + α2) + 1 (41)

γi =
(

2
2α1 + 1

) (
1

α1 + α2 + 1

)
(42)

ψi(r) =
ψ̃i(r)√
γi

(43)

P
(α1,α2)
n (x) represents the classical Jacobi polynomial of order n, e.g.,
P

(0,0)
n (x) is the Legendre polynomial. Similarly, the orthonormal basis

on the quadrilateral is given as

ψ̃α1α2(r) = P (0,0)
α1

(r)P (0,0)
α2

(s) (44)

γα1α2 =
(

2
2α1 + 1

) (
1

2α2 + 1

)
(45)

ψα1α2(r) =
ψ̃α1α2(r)√
γα1α2

(46)

We write two-dimensional Maxwell’s equations as a conservation law

Q
∂q

∂t
+ ∇ · F (q) = 0 (47)

where Q represent the materials, q the 3-vector of fields and F (q) the
flux. The detailed definition of these depends on which polarization is
considered, i.e., for the TMz form, we have

Q =


 µ 0 0

0 µ 0
0 0 ε


 , q =


 Hx

Hy

Ez


 , F (q) =


 0 Ez

−Ez 0
Hy Hx


 (48)

In kth subdomain, we shall assume that the solution qk can be
expressed as a polynomial approximation

qk
N (x, t) =

N∑
i=1

qk
(
xk

i , t
)

(xk) (49)

where Lk
i (x

k) is the multidimensional Lagrange polynomial. To arrive
at the semi-discrete scheme, let us require that local residual, i.e., the



180 Shi and Liang

error when qk
N (x, t) is substituted in to (19), vanishes in the following

way

∀k :
∫

Dk

(
Q
∂qk

N

∂t
+ ∇ · F k

N

)
Lk

i (x
k)dxk =

∮
∂Dk

Lk
i (x

k)n̂·
[
F k

N − F ∗
]
dxk

(50)
where the normal unit vector n̂ is pointing out of the boundary of the
kth subdomain.

This can be recognized as a Galerkin approach, albeit on the local
element only. The numerical flux, n̂ ·F ∗, can be obtained by Rankine-
Hugonoit jump conditions to satisfy the following relation [27]

n̂ · [F − F ∗] =



Z

−1
n̂×

(
−Z+[ �H] + n̂× [ �E]

)
Y

−1
n̂×

(
Y +[ �E] + n̂× [ �H]

) (51)

where [ �E] = �E− − �E+ and [ �H] = �H− − �H+ measure the jumps in the
field values across the interface and superscript ‘+’ and ‘−’ refer to the
values from neighbor and local element, respectively. Here parameters
Z± and Y ± denote the impedance and the conductance of the medium,
respectively, and Z and Y are the sums of the local impedance and
conductance, respectively.

This suffices to write down the local two-dimensional scheme for
TMz scheme as

εkM2d∂E
k
z

∂t
−SxH

k
y +SyH

k
x = F

{
ẑ ·

[
Y

−1
n̂×

(
Y +[ �E]+n̂×[ �H]

)]}∣∣∣
∂Dk

(52)

µkM2d∂H
k
x

∂t
+SyE

k
z = F

{
x̂·

[
Z

−1
n̂×

(
−Z+[ �H]+n̂×[ �E]

)]}∣∣∣
∂Dk

(53)

µkM2d∂H
k
y

∂t
−SxE

k
z = F

{
ŷ ·

[
Z

−1
n̂×

(
−Z+[ �H]+n̂×[ �E]

)]}∣∣∣
∂Dk

(54)

where M2d represents the local mass matrix; Sx and Sy represents
the stiffness matrix; F represents edge operator. They are given as
respectively

M2d
∣∣∣
ij

=
(
Li(xk), Lj(xk)

)
Dk

F
∣∣∣
ij

=
(
Li(xk), Lj(xk)

)
∂Dk

Sx

∣∣∣
ij

= x̂·
(
Li(xk),∇Lj(xk)

)
Dk

Sy

∣∣∣
ij

= ŷ ·
(
Li(xk),∇Lj(xk)

)
Dk

(55)
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3. NUMERICAL RESULTS

Having developed the formulations for the time domain solution of
the LHM, it is now time to consider the actual performance of the
computational framework. Temporal integration of the semidiscrete
approximation is done using a fourth-order, five-stage low storage
Runge-Kutta scheme [28] and a stability-limit time step scaling as

∆t ≤ CFL min
Ω

√
εrµr|χ|−1 (56)

with
√
εrµr reflecting the modified local speed of light due to materials

and
|χ| =

|∇r|
∆r

+
|∇s|
∆s

(57)

Here | · | refers to the absolute value of each of the vector components,
i.e., |∇r| = [|rx| |ry|]T ; (∆r,∆s) measures the axial distance
separating neighboring nodal points in I. Hence χ provides a measure
of the local grid distortion as a consequence of the mapping.

Two kinds of excitation sources are considered in this work:
uniform plane wave and localized lined source. For the uniform plane
source, the time function is chosen as the Blackman-Harris window
function [29] which can be expressed as

f(t) =




−
3∑

n=1

nπ

T
an sin

(
2nπt
T

)
, 0 < t < T

0 otherwise

(58)

where a1 = −0.488, a2 = 0.145, a3 = −0.01022222. The center
frequency of this function is defined as fc = 1.55/T . For localized
lined source, the time function is chosen as the multiple cycle m-n-m
pulse [8] which can be expressed as

f(t) =




gon(t) sin(ω0t) 0 ≤ t < mTp

sin(ω0t) mTp ≤ t ≤ (m+ n)Tp

goff (t) sin(ω0t) (m+ n)Tp ≤ t ≤ (m+ n+m)Tp

0 (m+ n+m)T ≤ t

(59)

where Tp = 1/f0 is the period of one single cycle and the three-
derivative smooth window functions are given by


gon(t) = 10x3

on − 15x4
on + 6x5

on

goff (t) = 1 −
(
10x3

off − 15x4
off + 6x5

off

) (60)
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with {
xon = 1 − (mTp − t)/mTp

xoff = (t− (m+ n)Tp)/mTp
(61)

The multiple cyclem-n-m pulse is a sinusoidal signal that has a smooth
windowed turn-on for m cycles, a constant amplitude for n cycles,
and then a smooth windowed turn-off for m cycles; hence, it has an
adjustable bandwidth (through the total number of cycles m+n+m)
centered at the frequency f0, as shown in Fig. 3.
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Figure 3. The waveform of the line electric current source in time
domain and frequency domain.

In addition, the Matrix-Pencil method [30] is used to reduce the
required computing time to reach the harmonic steady state.

Firstly, we test the validity and accuracy of the DGM based on
hybrid subdomains and the modified PML we proposed in the paper.
Consider plane wave scattering from a perfect conducting cylinder in
free space, as shown in Fig. 4(a). The modified PML is used to truncate
the boundary of computational domain. A plane wave is incident along
the x-axis on the cylinder. The radius of perfect conducting cylinder is
2m. In our calculation ∆t = 1 ps and the observation point is located
at (−2.1036,−2.1036). The solution to the scattering electric field Ez

at the observation point and the analytical solution are compared as
shown in Fig. 4(b). The excellent agreement of the results shows the
validity and accuracy of our algorithm.

For the second example, we validate the effectiveness of PML we
proposed in the paper. The geometry of computational domain is
shown in Fig. 5(a). The perfectly matched layer absorbing boundary
condition is extended to truncate the boundary of left-handed materials
in DGM simulation. A line electric current and observation point are
located at (−0.02, 0.0) m and (0.0,−0.0476) m, respectively. The center
frequency of the source is 30 GHz. The parameters in (4) are as follows:
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Figure 5. The comparison of performance between the standard PML
simulation and the modified PML simulation.
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Figure 6. The simulation of the focus property of LHM.

Γe = Γm = 0, ωoe = ωom = 0, ωpe = ωpm = 2.655 × 1011 rad/s. In
order to ensure the stability of the DGM, the time step ∆t is set to
be 0.01 ps. As shown in Fig. 5(b) and (c), the DGM with the modified
PML and the DGM with the standard PML are adopted to calculate
the field Ez at the observation point, respectively. By comparison,
we can find that the standard PML simulation is unstable, while the
modified PML simulation is stable enough to compute a solution for at
least 70000 time steps. Therefore, the stability of the modified PML
is greatly better than that of the standard PML, when the PML is
extended to truncate the boundary of left-handed materials.

For the third example, we consider the perfect lens foci property
of the LHM. The geometry and the parameter of the LHM are similar
to those in the example above. The center frequency of line electric
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Figure 7. The simulation of paraxial foci property of LHM.

current source is set to be 30 GHz, and its time function is the 5-
10-5 pulse. The snapshots of electric field intensity over the whole
simulation space are taken at t = 30 ps, 360 ps, 540 ps. The focus
inside and outside the LHM slab can be seen, as shown in Fig. 6(b)
and (c). This is because of the negative refractive index in the LHM
[8], as shown in Fig. 6(d). It is noted that there are no steady state foci
because of the highly dispersive nature of the LHM. In this example,
because the PML ABC is extended to truncate the boundary of the
LHM, we accurately model the LHM slab of infinite in y-axis.

Next, we consider the paraxial foci property of LHM. The
geometry and the source setting are similar to those in the second
example. The parameters in (4) are as follows: Γe = Γm = 1.0 ×
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Figure 8. The simulation of electric field intensity over computational
domain for the slab with µ < 0, ε > 0.

108 rad/s, ωoe = ωom = 0. ωpe = ωpm = 5.0 × 1011 rad/s. The
numerical intensities of electric field in whole computational domain
at t = 120 ps, 300 ps, 600 ps, 720 ps are plotted in Fig. 7. As shown
in Fig. 7(c) and (d), the paraxial focus appears near the center of the
LHM slab. This is accordance to the results given in [8]. Furthermore,
the paraxial focus beyond the rear face of the LHM slab is very difficult
to distinguish from the behavior of the field while the wave exits slab.
In this example, we can find that effect of fringe fields caused by the
top and bottom edges of the LHM slab has been eliminated because
PML ABC is extended to truncate the boundary of LHM.

In the following, we consider two cases for a slab with µ < 0, ε > 0,
and µ > 0, ε < 0. For the slab with µ < 0, ε > 0, the parameters
in (4) are as follows: Γe = Γm = 0, ωoe = ωom = 0, ω2

pe = 0, ωpm =
2.655×1011 rad/s; for the slab with µ > 0, ε < 0, the parameters in (4)
are as follows: Γe = Γm = 0, ωoe = ωom = 0, ωpe = 2.655×1011 rad/s,
ωpm = 0. The center frequency of line electric current source is still
set to be 30 GHz. Obviously, the dielectric constant ε and magnetic
permeability µ at the center frequency become µ = −µ0, ε = ε0 for the
first case and µ = µ0, ε = −ε0 for the second case. Fig. 8 and Fig. 9
show the snapshots of electric field intensity over the whole simulation
space at t = 900 ps, 900 ps for two cases, respectively. In the first
case, there are neither real wave vectors nor backward waves because
of µ < 0, ε > 0 [6]. It was found that the wave decay exponentially
everywhere inside the slab and the surface wave is easily excited on the
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Figure 9. The simulation of electric field intensity over computational
domain for the slab with µ > 0, ε < 0.
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(a) The snapshot is taken at ps300t            (b) The snapshot is taken at ps480t= =

Figure 10. The simulation of electric field intensity over
computational domain for the slab with µ > 0, ε < 0.

interface, as shown in Fig. 8. In the second case, due to µ > 0, ε < 0,
there are still neither real wave vectors nor backward waves [6]. Similar
to the first case, the wave decays exponentially everywhere inside the
slab. The surface wave, however, is negligible on the surface.

Finally, we consider variation of EM phenomenon in the slab
with the center frequency of a line electric current. The medium
parameters in the slab are same as those in the second example. Here,
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Figure 11. The simulation of electric field intensity over
computational domain for the slab with ε = µ = 0.

we choose the center frequency of a line electric current as 59.76 GHz
and 42.26 GHz, respectively. In the first case, the permittivity ε
and permeability µ are positive in the whole frequency band of the
excitation. In the second case, the ε and µ are equal to zero at the
center frequency. Therefore, the ε and µ are positive in one half of
frequency band and the ε and µ are negative in the other half of
frequency band. Fig. 10 shows the snapshots of electric field intensity
over the whole simulation space at t = 300 ps, 480 ps for the first case
and Fig. 11 shows the snapshots of electric field intensity over the whole
simulation space at t = 300 ps, 660 ps for the second case. From Fig. 10
and Fig. 11, we can see that with the change of the center frequency
of the excitation from 59.76 GHz to 42.26 GHz, the electromagnetic
wave in the slab is converged. Furthermore, when the center frequency
becomes 30 GHz, which corresponds to ε and µ with negative values,
the electromagnetic wave in the slab is focused at the one point, as
shown in the Fig. 6.

4. CONCLUSION

The novel discretization formulations of the Lorentz medium model
for the solution of wave propagation in the Left-Handed medium have
been developed in this paper. The modified perfectly matched layer
formulae have been derived to overcome the instability inherent in
the standard PML for the truncating the boundary of left-handed
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medium. Furthermore, we adopt discontinuous Galerkin method based
on the hybrid domain, i.e. triangle domain and quadrilateral domain,
and the modified PML formulae to numerically study EM phenomena
in the LHM. The simulation results show accuracy and stability of
the proposed scheme and provide a basis for the more research on
properties of the left-handed medium.
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