Vol. 61
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-04-03
System Identification of Acoustic Characteristics of Enclosures with Resonant Second Order Dynamics
By
, Vol. 61, 89-110, 2006
Abstract
This research concerns offline identification of acoustic characteristics of enclosures with second-order resonant dynamics and their modeling as linear dynamic systems. The applied models can be described by basis function expansions. The practical problem of acoustic echo in enclosures is used as the target problem to be addressed. It has been found out that the classical filters are ineffective filter structures for approximating an echo generating system, due to their many required parameters. In order to reduce the number of estimated parameters, alternative methods for modeling the room impulse response need to be investigated. Out of various available techniques impulse response identification is utilized. With the help of given experimental data, the enclosures' impulse response is modeled using special orthonormal basis functions called Kautz functions. As another improved approximation, hybrid multistage system identifiers have been used in which the simplicity of classical filter structures and fast convergence of orthonormal structures is utilized as an advantage.
Citation
Shabbir Chaudhry, and Alina Chaudhr, "System Identification of Acoustic Characteristics of Enclosures with Resonant Second Order Dynamics," , Vol. 61, 89-110, 2006.
doi:10.2528/PIER06010702
References

1. Beranek, L. L., Acoustics, Acoustical Society of America, 1993.

2. Morse, P. M. and K. U. Ingard, Theoretical Acoustics, Princeton University Press, 1987.

3. Cremer, L. and H. A. Muller, Principles and Applications of Room Acoustics, Vols. 1 and 2, 1982.

4. Gritton, C. W. K. and D. W. Lin, "Echo cancellation algorithms," IEEE Acoustics, Vol. 1, No. 2, 30-38, 1984.

5. Haneda, Y., S. Makino, and Y. Kaneda, "Common acoustical pole and zero modeling of room transfer functions," IEEE Transactions on Acoustics, Vol. 2, No. 2, 320-328, 1994.

6. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1996.

7. Ljung, L., System Identification: Theory for the User, Prentice- Hall, 1999.

8. Mourjopoulos, J. and M. A. Paraskevas, "Pole and zero modeling of room transfer function," Journal of Sound and Vibration, Vol. 146, No. 2, 281-302, 1991.
doi:10.1016/0022-460X(91)90764-B

9. Kuttru, H., Room Acoustics, Elsevier Applied Science, 1991.

10. Ninness, B. and F. Gustafsson, "A unifying construction of orthonormal bases for system identification," IEEE Transactions on Automatic Control, Vol. 42, No. 4, 515-521, 1997.
doi:10.1109/9.566661

11. Davidson, G. W. and D. D. Falconer, "Reduced complexity echo cancellation using orthornormal functions," IEEE Transactions on Circuits and Systems, Vol. 38, No. 1, 20-28, 1991.
doi:10.1109/31.101300

12. Wahlberg, B. and P. M. Makila, "On approximation of stable linear dynamical systems using Laguerre and Kautz functions," Automatica, Vol. 32, No. 5, 693-708, 1996.
doi:10.1016/0005-1098(95)00198-0

13. Heuberger, P. S. C., P. M. J. Van den Hof, and O. H. Bosgra, "A generalized orthonormal basis for linear dynamical systems," IEEE Transactions on Automatic Control, Vol. 40, No. 3, 451-465, 1995.
doi:10.1109/9.376057

14. Makila, P. M. and J. R. Partington, "Laguerre and Kautz shift approximations of delay systems," International Journal of Control, Vol. 72, No. 10, 932-946, 1999.
doi:10.1080/002071799220678

15. Silva, T. O., "Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles," IEEE Transactions on Automatic Control, Vol. 40, No. 2, 342-346, 1995.
doi:10.1109/9.341807

16. Kaneda, Y., "A study of non-linear effect on acoustic impulse response measurement," Journal of Acoustical Society of Japan, Vol. 16, No. 3, 193-195, 1995.

17. Carayannis, G., D. G. Manolakis, and N. Kalouptsidis, "A fast sequential algorithm for least-squares filtering and prediction," IEEE Transactions on Acoustics, Vol. 31, No. 6, 1394-1402, 1983.
doi:10.1109/TASSP.1983.1164224

18. Tanguy, N., R. Morvan, P. Vilbe, and L. C. Calvez, "Improved method for optimum choice of free parameter in orthogonal approximations," IEEE Transactions on Acoustics, Vol. 47, No. 9, 2576-2578, 1999.

19. den Brinker, A. C., "Optimality conditions for a specific class of truncated Kautz series," IEEE Transactions on Circuits and Systems-II, Vol. 43, No. 8, 597-600, 1996.
doi:10.1109/82.532006

20. Murano, K., S. Unagami, and F. Amano, "Echo cancellation and applications," IEEE Communication Magazine, Vol. 28, No. 1, 49-55, 1990.
doi:10.1109/35.46671