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Abstract—This research concerns offline identification of acoustic
characteristics of enclosures with second-order resonant dynamics and
their modeling as linear dynamic systems. The applied models can
be described by basis function expansions. The practical problem
of acoustic echo in enclosures is used as the target problem to be
addressed. It has been found out that the classical filters are ineffective
filter structures for approximating an echo generating system, due
to their many required parameters. In order to reduce the number
of estimated parameters, alternative methods for modeling the room
impulse response need to be investigated. Out of various available
techniques impulse response identification is utilized. With the help of
given experimental data, the enclosures’ impulse response is modeled
using special orthonormal basis functions called Kautz functions. As
another improved approximation, hybrid multistage system identifiers
have been used in which the simplicity of classical filter structures and
fast convergence of orthonormal structures is utilized as an advantage.

1. INTRODUCTION

Sounds originate when air particles are induced to vibrate around their
mean position with consequent changes in the air pressure with respect
to a static value. This results in a soundfield in which variations of air
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density and pressure are function of time and space and propagate as
acoustic waves [1].

A simplified but realistic hypothesis in room acoustics, is to
assume that air is a homogeneous medium at rest. The speed c of
acoustic wave propagation in air then depends only on temperature
and is given by the following formula:

c = 331.45
√
T/273 m/s

where T is the temperature in kelvins.
Basic laws of physics [2], such as conservation of momentum and

conservation of mass, and the ideal-gas equations, lead to a relationship
between pressure and density of a fluid in a general differential equation
governing sound propagation (Kinsler et al., 1982; Morse and Ingard,
1986). This relationship is the so-called wave equation:

∇2p =
1
c2
∂2p

∂t2

where p denotes sound pressure, t denotes time and ∇ is the laplacian
operator.

The wave equation is a linear equation and complex exponentials
are solutions of it. Since any function with a convergent Fourier
integral can be expressed as a weighted superposition of complex
exponentials, it is possible to assert that, thanks to linearity, any signal
described by this type of function satisfies the wave equation. As
a consequence of the superposition principle, any sound field can be
thought of as resulting from the superposition of elementary plane or
spherical waves. Waves propagate undistorted (under the hypothesis
of nondispersive, lossless and homogeneous medium) and carry along
the information generated by distant sources.

1.1. Room Acoustics

Generally when we listen to someone talking in a room, unless we are
face to face with her/him, most of the acoustic energy captured by
our ears is carried by indirect sounds arising from reflection at various
surfaces inside the room.

The original signal produced by the speaker undergoes an
alteration of its perceptual features such as level, timbre and
spatial impression, due to reflections from surfaces and diffusion and
diffraction by objects inside the room.

This phenomenon, known as reverberation [2], is the most
noticeable acoustical phenomenon directly perceivable in an enclosure.
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For this reason the most important objective measure in room acoustics
is reverberation time. Reverberation time, T60, of a room is defined
as the time needed for the acoustic power of a received signal to
decay by 60 dB from a steady state value after the sound source is
abruptly stopped. The reverberation time is nearly independent from
the listening position since it is almost constant in a given enclosure
[3]. Reverberation times up to 1s (measured for frequencies between
500 and 1000 Hz) do not cause any loss in speech intelligibility.

The space separating a sound source from a receiving transducer
can be seen as a transmission channel in which the acoustic signal
is conveyed and modified, according to the acoustic characteristics of
the environment. The impulse response h(t) of the acoustic channel
between source and sensor in a reverberant room represents all the
multiple reflections from the surrounding surfaces that reach the sensor
in addition to the direct sound. Reflections from walls and objects
produce a variety of paths between the source and the sensor. Since
paths have different length, the propagation delay differs from one path
to another and several replicas of the radiated signal reach the sensor
after the direct wave front. Every time a wavefront hits a surface, it is
partially absorbed and partially reflected. All the reflections contribute
to create the complicated impulse response typical of an enclosure, as
shown in Figure 1. The effect is more pronounced when the source
is placed further from the sensor: the original waveform is distorted
by constructive and destructive interference at various frequen-cies.
It should be noted that, in ordinary reverberation conditions (T60 <
0.7 s), the listener is generally unaware of the distortion of the direct
signal caused by reflections [3, 16].

The reflected wavefronts are perceived by human ears only when
their delay from the direct sound is longer than 50 ms. Reflections

 

Figure 1. The phenomenon of reverberations in an cnloslure.
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exceeding this threshold generally have a negative effect on speech
intelligibility, because they result in a merging of basic speech sounds.

On the contrary, for delays shorter than 50 ms, reflections (“early
reflections”) are perceived as part of the direct sound. Their effect on
sound perception is an increase in loudness and a spectral alteration,
known as “coloration”, that characterizes the “acoustics” of each room.

This research paper is organized as follows. Section 1 gives an
introduction to acoustics in general and room acoustics in particular.
Section 2 discusses a convenient method of modeling the acoustic echo
generating system. Section 3 gives an introduction to linear model
structures. Section 4 describes orthonormal functions and rationale
behind using them in modeling. A novel multistage hybrid model
is also suggested. Section 5 gives the optimization techniques to
be implemented on orthonormal models to reduce the number of
estimation parameters. Section 6 describes the experimental setup
and Section 7 contains some concluding remarks.

2. MODEL OF THE ACOUSTIC ECHO GENERATING
SYSTEM

The echo generating system can be approximately described by the
linear model structure. To deal with the problem of estimating the
acoustic echo path, we first assume that the echo path is linear
and stationary for a short time interval. Although there exist some
nonlinearity characteristics presented in the system, the assumption of
linearity still gives rise to satisfied results depending on an amount of
non-linearity of the system. It is difficult to gain a deep insight about
the echo generating system for each specific purpose. Consequently, it
is suitable to model the system by using a black box model approach
which is mainly based on observed input signal u(t) and output signal
y(t). The task is to estimate the impulse response of the unknown
system (echo path), since if the system is linear, its impulse response
will then completely represent it [4].

Supposing that the measured output signal is given by the echo
r(t) corrupted by the near-end disturbance x(t), i.e.,

y(t) = r(t) + x(t), where r(t) = He ∗ u(t)

where * denotes the convolution operation, and He is the transfer
function of the true echo path. The echo generating system is shown
in Fig. 2.

Since one cannot know the true echo signal, the purpose of
modeling is to find out the model that can properly reproduce the true
echo signal, given the input signal. It is not possible to exactly obtain



Progress In Electromagnetics Research, PIER 61, 2006 93

 

Figure 2. The echo generating system.

the model of true system He. Hence, it is appropriate to introduce
modeling error, εm(t), in an estimated echo signal, r̂(t) to represent
the true echo signal as shown in Fig. 3. This modeling error can be
used to determine how fit the estimated model, H, could be. If εm(t) is
equal to zero, then we have succeeded in modeling the true echo path.

Figure 3. An estimated model H with modeling error.
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Figure 4. A general linear model structure.

3. LINEAR MODEL STRUCTURES

Again, the stable LTI system can be adequately modeled by a linear
black box model structure. Its graphical representation associated
with the echo generating system is depicted in Fig. 2, where y0(t) is
considered to be the optimum estimated output that can be obtained
within a specific model class and a fixed model size [4]. Note that,
A(q) represents the poles that are common between the input and the
noise. Similarly, F (q) corresponds to the poles that are unique for the
input, whereas D(q) determines the poles that are unique for the noise.
The advantage of this model is that the effect of disturbance is also
taken into consideration to obtain a more accurate result. That is,
since the actual near-end disturbance x(t) is unknown, it is often more
convenient to model x(t) as being obtained by filtering a white noise
source w(t) through a linear filter [C(q)/(D(q)A(q))]. The modeling
error εm(t), represents the inability of the proposed model structure to
correctly describe the relationship between the input and the output.
Herein, three basic linear model structures FIR, ARX and OE are
presented.

3.1. The Finite Impulse Response Model Structure (FIR)

FIR model is a widely used model structure to describe the system of
interest due to its simplicity and stability [5]. It is a special case of
Eq. (1).

When A(q) = C(q) = D(q) = F (q) = 1 which can be expressed as

y0(t) = B(q)u(t− nk) + w(t)
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=
nb∑

k=1

bkq
−ku(t− nk) + w(t)

=
(
b1q

−1 + b2qq
−2 + · · · + bnbq

−nb
)
u(t− nk) + w(t)

= b1u(t−nk−1)+b2u(t−nk−2)+· · ·+bnbu(t−nk−nb)+w(t)

where the parameters, bk for k = 1, 2, . . . , nb, represent the magnitude
of truncated system impulse response, and the signal w(t) is assumed
to be uncorrelated with the input signal u(t). Fig. 5 illustrates the FIR
model.

Figure 5. The FIR model structure.

Observe that, the signal w(t) can be perceived as the nearend
speaker’s speech signal and/or unknown disturbance.

In the view of the prediction error, the predicted signals are
mainly based on the old inputs. They are usually called the regressors
of the model and can be collected in a regression vector, ϕ(t) =
[u(t − nk − 1) u(t − nk − 2) · · · u(t − nk − nb)]T . The parameter
vector to be estimated can be written as θ = [b1 b2 · · · bnb]T .

Obviously, FIR model is suitable to represent the echo path
because it does not model the signal w(t) which is considered as the
desired signal in this thesis project. However, it leads to a large number
of estimated parameters in order to obtain an accurate approximation.
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4. ORTHONORMAL MODELS

In theory, the number of parameters employed in the filter depends
upon the echo path delay and the length of the impulse response of an
echo path [9]. For the echo canceller to work suitably, the number of
parameters should have a length greater than the combined effect of
the true echo path’s impulse response length and the echo path delay.
Let Ts be the sampling period of the digitized speech signal, M be the
number of parameters used in the filter, and τ be the combined effect
to be considered. Consequently, one obtain

MTs > τ

Since the typical value of Ts is 125µs for a standard digital
communication system, it is obvious that, if τ = 500 ms, M > 4000
parameters are required in the filter. The traditional approaches,
as discussed earlier, for modeling the system of interest lead to the
approximation of very high order in case of rapid sampling and/or
dispersion in time constant, which is closely related to the dominating
pole of a true system. Such a high model order cannot be acceptable in
practice due to some difficulties in terms of performance and hardware
complexity. By exploiting a priori information about the dominating
pole of the system, more appropriate series expansions related to the
use of orthonormal basis functions are proposed [4].

These orthonormal functions are constructed by orthonormalizing
a given set of exponential functions [10]. They are orthogonal in
L2(0,∞), and form a complete set in L2(0,∞), and L1(0,∞). Laguerre
and two-parameter Kautz (or, more popularly, just “Kautz”) functions
are all special cases of orthonormal bases. Laguerre function is suitable
for the system with dominant first-order dynamics, whereas Kautz
function is appropriate for the system with dominant second-order
resonant dynamics [10, 11]. It has been found out [11] that the model
order can be substantially reduced when the dominating pole is chosen
suitably. In this section, Kautz functions are presented. The Kautz
model can be easily implemented with FIR and ARX structures by just
replacing a traditional delay operator of these structures with Kautz
function. These functions can be generalized, to a family of rational
orthonormal basis functions for the Hardy space H2 of stable linear
dynamic systems.

Consider a stable LTI system which is given by

y(t) = G(z, θ)u(t− nk) +H(z, θ)w(t)

where y(t), u(t), and nk are the output, input, and delay respectively
[5]. The noise w(t) is assumed to be a stationary process with zero
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mean and unit variance. G(z, θ) and H(z, θ) are the set of transfer
function parameterized by the parameter vector θ for the input and
the noise, where z is the unit step delay (z−1u(t) = u(t − 1)). Given
N samples of observed data, by t we means the time at the sampling
instants t = kT , for k = 1, 2, . . . , N , and T is assumed to be equal to
1 for simplicity [7].

By assuming that H(z, θ) is minimum phase to guarantee that
H(z, θ)−1 is stable, and normalized (H(∞, θ) = 1), the optimal one-
step ahead predictor of y(t) is thus defined as

y(t, θ)[H(z, θ)−1G(z, θ)]u(t− nk) + [1 −H(z, θ)−1]y(t) (1)

We shall assume thatH(z, θ) and G(z, θ) have the same unstable poles.
It then follows that

H(z, θ)−1G(z, θ) =
∞∑

k=1

bkβ(z) (2)

1 −H(z, θ)−1 =
∞∑

k=1

bkβ(z) (3)

where the basis function βk(z) = z−k, |z| ≥ 1, known as the delay
operator [7]. For a stable LTI system, it is required that

∞∑
k=1

|bk| <∞ and
∞∑

k=1

|ak| <∞

Practically, since both bk and ak tend to zero as k → ∞, we may
truncate these expansions at k = n to adequately approximate the
system with the finite number of estimated parameters.

Hence, Eq. (1) can be rewritten in a truncated series expansion as

ŷ(t, θ) =
n∑

k=1

bkβk(z)u(t− nk) +
n∑

k=1

akβk(z)y(t) (4)

By taking the parameter vector θ = [a1 a2 · · · an b1 b · · · bn]T , the
well-known ARX model structure is derived [8]. Setting ak = 0, for
all k, leads to FIR model structure, or by taking bk = 0, for all k, AR
model structure is realized. In theory, the usefulness of the estimate is
limited by how fast the sums in Eq. (2) and Eq. (3) converge, i.e., the
rate of the error terms

n∑
k=n+1

|βk| and
n∑

k=n+1

|ak|
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tend to zero as n→ ∞. The rate of convergence is basically determined
by the location of the poles of G(z, θ) and the zeros of H(z, θ). Poles
and zeros close to unit circle imply a slow rate of convergence. IfG(z, θ)
and H(z, θ) are obtained by sampling a continuous time system, using
a sampling interval T , the continuous time poles and zeros, λ, are
approximately mapped to the discrete time poles and zeros at {eλT }
for small T . Since most digital applications require a high sampling
rate, i.e., T → 0, one could get a serious problem of estimating this
system due to a very slow rate of convergence because the discrete time
poles and zeros approach one.

Additionally, because the variance of an estimated model is
proportional to the number of estimated parameters, it is advantageous
to use as few parameters as possible but still guarantee an useful model.
These problems have motivated to use an alternative operator which is
less sensitive to the location of poles and zeros. This is a consequence
of the fact that the delay operator has too short memory (only one
sampling step). By introducing the operator with longer memory,
the number of estimated parameters necessary to obtain an accurate
approximation can then be reduced [10]. This operator can be chosen
as

βk(z) =
1

z − ξk
= z−1 + ξkz

−2 + ξ2kz
−3 + ξ3kz

−4 + · · ·

where the poles ξk are chosen according to a priori knowledge of the
true system. It is desirable to construct the orthonormal basis function
based on this operator. The procedure of a unifying construction of
orthonormal bases can be seen in [8] and the result is given by

βk(z) =

[√
1 − |ξk|2
z − ξk

]
k−1∏
j=1

[
1 − ξjz

z − ξj

]
, for k ≥ 1 (5)

where a variety of poles at {ξ1, ξ2 · · · ξk} are incorporated. These
basis functions are orthonormal with respect to the following inner
product [8].

〈βi(z), βj(z)〉 =
1

2πj

∮
Γ
βi(z)βj(z)

dz

z
= 0, for i = j

and have unit normalization

‖βk(z)‖2 = 1, for ∀k

Several advantages are attained from employing the orthonormal basis
functions in system identification problem [13]. Firstly, they have
transforms that are rational functions with a very simple repetitive
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Figure 6. Discrete-time orthonormal networks of order n.

form. This allows their practical realization with concatenated blocks
as illustrated in Fig. 6. Secondly, the solution of transfer function
estimation problems leads to the normal equation having a diagonal
structure. However, it holds only if the input is white sequences.
Furthermore, if the normal equation has a Toeplitz structure [6], much
is gained in terms of numerical algorithm, sensitivity, etc. Finally,
as seen in Eq. (5), the orthonormal basis function consists of a first
order low-pass term and k − 1 all-pass terms. Such all-pass filters
are favorable in terms of numerical sensitivity, and they are often
recommended to use in filter design. FIR, Laguerre and Kautz
functions are all special cases of orthonormal basis functions [12].
Manifestly from Eq. (5), FIR function is realized by choosing ξk = 0
for all k. Kautz function is generalized when the pole is chosen such
that ξk = ξ, where ξ is complex valued and |ξ| < 1, for all k.

System identification deals with the problem of finding the
estimate of G0(z) from the experimental data of {y(t), u(t)}, where
t = 1, 2, . . . , N . Theoretically, G0(z) can be represented by an infinite
number of given basis functions. In practice, a truncated series
expansion, say the nth order, is used to estimate G0(z) with the result
that there is a truncation error. This error can be minimized by a
proper choice of basis function. In addition, the identification problem
can be simplified to a linear regression estimation problem if the model
structure is a priori linear in the parameters, i.e., if the model can be
expressed as

G(z) =
n∑

k=1

gkβk(z)
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where βk(z) is a set of given basis functions and gk are the parameters
to be estimated. The least squares estimation method is then applied
to find the optimal values of the model parameters of lower order
terms. Since the proper choice of basis function, βk(z), will give rise
to a considerable increase in the rate of convergence and a significant
decrease in the asymptotic variance of the estimated transfer function,
this leads to accurate approximation with less number of estimated
parameters. Herein, we shall a special case of orthonormal basis
functions, namely (two-parameter) Kautz functions.

The problem in system identification using Kautz function has
been studied in [12]. Since the system in real applications is much
more complicated than modeling it by using one real-valued pole, it
is necessary to use a complex-valued pole to characterize the resonant
part of the system. Since as soon as one pole, say ξj is chosen as
a complex pole, then the impulse responses for the βk(z) for k > j
become complex, and this is physically unacceptable in a system
identification problem. To avoid this problem, one needs to include its
complex conjugated pole automatically whenever one complex-valued
pole is chosen in Kautz basis function. The detail of deriving Kautz
basis function can be seen in [8]. Given the nth model order, the
truncated Kautz series expansion can be written as

G(z) =
n/2∑
k=1

{g2k−1Ψ2k−1(z) + g2kΨ2k(z)}

where the Kautz basis function is given by

Ψ2k−1(z) = K
(1)
k

k−1∏
i=1

Λi(z) (6)

Ψ2k(z) = K
(2)
k

k−1∏
i=1

Λi(z) (7)

where

K
(1)
k =

√(
1 − γ2

k

)
(z − αk)

z2 − αk(γk + 1)z + γk
and K

(2)
k =

√(
1 − γ2

k

) (
z − α2

k

)
z2 − αk(γk + 1)z + γk

,

Λi(z) =

(
γiz

2 − αi(γi + 1)z + 1
z2 − αi(γi + 1)z + γi

)
, for i = 1, 2, . . . , k − 1

αk =
ξk + ξk

1 + |ξk|2
and γk = |ξk|2, for which |αk| < 1 and |γk| < 1,
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and ξk is a complex-valued pole. In this research paper, we shall
consider only two-parameter Kautz functions where ξk is chosen equal
to (complex-valued) ξ, for all k [14, 15]. On account of an orthonormal
property, the Kautz parameters {g2k−1, g2k} can be determined by the
projection on the basis functions, i.e., g2k−1 =< G(z),Ψ2k−1(z) > and
g2k =< G(z), Ψ2k(z) >. The discrete Kautz network can be simply
represented in concatenated blocks as illustrated in Fig. 7.

Figure 7. Discrete-time Kautz network of order n.

Orthonormal model is extended and generalized to Kautz model
which can cope with several different possible complex poles [15].

4.1. Two-Stage Impulse Response Model

The typical echo impulse response can be decomposed into 2 parts,
namely the first part which normally has a rapid time variation, and
the second part known as the tail of the impulse response which is
slowly decaying towards zero.

By exploiting the characteristics of such an echo impulse response,
an approach of using a two-stage echo canceller is introduced [16]. Its
purpose is to reduce the number of estimated parameters as well as the
computational complexity of an echo canceller algorithm, particularly
in case of the echo response with a long tail. This can be done
by dividing the structure of an echo canceller into two stages. The
first stage is a conventional transversal FIR filter that spans for the
first few parameters of the echo impulse response, while the second
stage approximates the remainder or tail of the response by a linear
combination of orthonormal functions. In other words, the tail may
be well approximated by combining a few parameters, whereas a
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Rapid time
variation Tail of the impulse

response

Figure 8. Dissection of impulse respone in two parts.

Figure 9. Hybrid two stage model for system identification.

conventional transversal FIR filter representation will involve far more
parameters. As a result, if the number of estimated parameters in an
orthonormal model is not large, a substantial reduction in the model
order and the computational complexity can be achieved [17].

Fig. 9 shows the two-stage echo canceller which is divided into
two parts. The first is a conventional transversal FIR filter with nb
tap parameters, bk for k = 1, 2, . . . , nb, which approximate the first
nb of the first part of the echo impulse response. The second is an
orthonormal model with na parameters, gk for k = 1, 2, . . . , na, which
are used to approximate the tail portion of the echo response.
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5. OPTIMIZATION

Any stable LTI system can be modeled by an infinite series of
orthonormal functions which involve a free parameter [19], closely
related to the dominating pole. Theoretically, when infinitely many
parameters are employed in the expansion, the choice of a dominating
pole is somewhat arbitrary. In practice, however, a truncated series
expansion is used and results in the truncation error. This error is
basically a function of the model order and its dominating pole. For
a fixed model order, there exists an optimal dominating pole that
minimizes the truncation error [19].

The input-output relation of an estimated model of order n be
represented by

ŷ(t) =

(
n∑

k=1

gkβk(z)

)
u(t− nk) = ϕT (t)θ (8)

where βk(z) corresponds to a set of chosen basis function, i.e., Kautz
function,

ϕ(t) = [β1(z)u(t− nk)β2(z)u(−nk) · · ·βn(z)u(t− nk)]T and

θ = [g1 g2 · · · gn]T .

Consequently, the least squares solution of θ̂ defined as the parameter
θ̂ that by minimizing the loss function as given by

v(θ) =
1
N

N∑
t=1

(y(t) − ϕT (t)θ)2 (9)

Now let us introduce the following notation:

d̂j(ξ) =
1
N

N∑
t=1

y(t)βju(t− nk), for 1 ≤ j ≤ n

γ̂(ξ) =
(
d̂1(ξ), d̂2(ξ), . . . , d̂n(ξ)

)T

Γ̂n(ξ) =
1
N

N∑
t=1

ϕ(t)ϕt(t)

Given a stable LTI system, the loss function will be a function of the
model order and its dominating pole. For a fixed model order, there
exists an optimal dominating pole that minimizes the loss function.
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The optimal dominating pole is therefore chosen as the one that
minimizes the Eq. (7), which is simply equivalent to [19]

ξopt = argmin
ξ

[
1
N

N∑
t=1

y2(t) − γ̂n(ξ)T Γ̂n(ξ)−1γ̂n(ξ)

]
(10)

or equally
ξopt = argmax

ξ

[
γ̂n(ξ)T Γ̂n(ξ)−1γ̂n(ξ)

]
(11)

The solution in equations (10) and (11) can be either a real value or
a complex value. Accordingly, this method will be applied to find
the optimal dominating pole for both Laguerre and Kautz models.
Nevertheless, the drawback of this method is that we need to use the
search method to find the optimal dominating pole at each model order.
It is done by varying the value of ξ within unit circle in order to retain
the stability of a model, and choosing the pole that yields the maximum
value in Eq. (11). Since the matrix size of each element in Eq. (10) will
be proportional to the number of estimated parameters in orthonormal
model, if one is required to find the optimal dominating pole at very
high order, it will take long time for solving Eq. (10). Therefore,
such wasted time can be viewed as the computational complexity,
i.e., the larger the matrix size, the longer the wasted time, and then
the higher the computational complexity [17]. Evidently, this method
requires much higher computational complexity than the first method.
As a result, to avoid the computational complexity of calculating the
optimal dominating pole at very high order, one need to subdivide the
whole interval of the pole into smaller subintervals of more manageable
size.

6. PROCESS OF GENERATING AND COLLECTING
THE DATA

Since the real acoustic echo data employed in this research paper has
been collected from the system that is made as near stationary as
possible in order to be able to use the offline method to estimate
the values of the model parameters, it is noteworthy to explain the
process of generating and collecting the real acoustic echo data. Such
a process can be represented in Fig. 10. The microphone is located
approximately 80 cm from the loudspeaker of high quality. The
environment in which the recording is made is a hard acoustical room.

The dimension of the room is approximately 30 m by 20 m and the
height is 20 m.
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Figure 10. Settings for the experiment to collect real acoustic data
in Lecture Room #3 on ground floor of EED,UET, Taxila.

Orthonormal Model 
Model 
Order FIR 

Fit of 
errorr 

DB 
 Improvement 

 0.2094 0.2094 0
10 1463 1371 0.5641
5 1195 1192 0.0218

100 1174 1172 0.0148
200 11 1098 0.0158
300 1049 1042 0.0582
400 0991 0985 0.0527
500 0928 0925 0.0281

2
0.
0.
0.

0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.

   Kautz 

Fit o f error Pole DB improvement 

0.1895 0.80+0.50i 0.8673
0.1345 0.14+0.30i 0.7304

0.53+0.45i 073
0.1145 0.56+0.59i 0.2173
0.1063 0.44+0.64i 0.2972
0.0994 0.41+0.50i 0.4678
0.0931 0.35+0.39i 0.5425
0.0882 0.35+0.31i 0.4416
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Figure 11. Bode plots (Magnitude and Phase) of transfer function
approximations, where True system (X-mark), FIR (Circle) and Kautz
(Solid).

The signal (white noise) of 10 ms is fed to the amplifier before
being collected at the recorder as the input signal, u(t), and
transmitted to the loudspeaker. The signal is propagated in the room
and then reflected back to the microphone as acoustic echo which is
collected by the same recorder as the output signal, y(t). All signals
collected at the recorder are sampled at 12 kHz. Nothing is moved in
this room.
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Figure 12. Left: Fits of error between FIR model (X-mark) and
Kautz model (Circle). Right: The DB improvement of Kautz model
with respect to a FIR model at each model order.

Firstly we shall investigate how the segmented data used for
estimation and validation affects the resulting optimal dominating
pole. Three different segments of data are randomly chosen. We
shall use the segment of estimation data at ZE = 10000 : 17999 and
validation data at ZV = 20000 : 27999 as the reference set.

Fits of error as the reference set when ZE = ZV and the data
length of 8000 samples.
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Figure 13. The DB improvement of the proposed models with respect
to a FIR model at each model order.

Figure 14. The coefficient magnitude of the Kautz model with a pole
of 0.67+0.42i, and the Kautz model with a pole of 0.8+0.5i.

7. CONCLUSIONS

The effect of acoustic echo is quite complicated in a closed room. FIR
model is widely used to model this room impulse response due to
simplicity and stability. However, it leads to the approximation of very
high order, probably in the order of 4000 or may be more with larger
reverberation T60 time. By exploiting a priori information about the
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dominating pole of the system, an approximation of the room impulse
response by means of the Kautz functions is proposed. We have also
presented methods to find such an optimal dominating pole.

The changes in the echo path impulse response cause an increase
in the residual echo error signal. This forces the acoustic echo canceller
to start adapting to the new impulse response and it can even diverge,
if the changes are fast or abrupt. In the installed phone, the speaker
and microphone should not be directed to the path that is subject to
fast changes. It is usually better to direct the speaker and microphone
towards the ceiling since this echo path changes rarely. So the offline
system identification techniques can be employed because the system
in these condition is practically time invariant.
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