Vol. 60
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-02-25
Electromagnetic Gaussian Beams and Riemannian Geometry
By
Progress In Electromagnetics Research, Vol. 60, 265-291, 2006
Abstract
A Gaussian beam is an asymptotic solution to Maxwell's equations that propagate along a curve; at each time instant its energy is concentrated around one point on the curve. Such a solution is of the form

E = Re{eiPθ(x,t)E0(x, t)},

where E0 is a complex vector field, P >0 is a big constant, and θ is a complex second order polynomial in coordinates adapted to the curve. In recent work by A. P. Kachalov, electromagnetic Gaussian beams have been studied in a geometric setting. Under suitable conditions on the media, a Gaussian beam is determined by Riemann-Finsler geometry depending only on the media. For example, geodesics are admissible curves for Gaussian beams and a curvature equation determines the second order terms in θ. This work begins with a derivation of the geometric equations for Gaussian beams following the work of A. P. Kachalov. The novel feature of this work is that we characterize a class of inhomogeneous anisotropic media where the induced geometry is Riemannian. Namely, if ε, μ are simultaneously diagonalizable with eigenvalues εi, μj , the induced geometry is Riemannian if and only if εiμj = εjμi for some i ≠ j. What is more, if the latter condition is not met, the geometry is ill-behaved. It is neither smooth nor convex. We also calculate Riemannian metrics for different media. In isotropic media, gij = εμδij and in more complicated media there are two Riemannian metrics due to different polarizations.
Citation
Matias Dahl, "Electromagnetic Gaussian Beams and Riemannian Geometry," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.
doi:10.2528/PIER05122802
References

1. Kurylev, Y. V., M. Lassas, and E. Somersalo, "Maxwell's equations with scalar impedance: Direct and inverse problems," Institute of Mathematics Research Reports, 2003.

2. Bossavit, A., "On the notion of anisotropy of constitutive laws. Some implications of the 'Hodge implies metric' result," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20, No. 1, 233-239, 2001.

3. Kravtsov, Y. A. and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, 1990.

4. Kachalov, A. and M. Lassas, "Gaussian beams and inverse boundary spectral problems," New Analytic and Geometric Methods in Inverse Problems, 127-163, 2004.

5. Kachalov, A., Y. Kurylev, and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC, 2001.

6. Ralston, J., "Gaussian beams and the propagation of singularities," Studies in Partial Differential Equations, Vol. 23, 206-248, 1982.

7. Kachalov, A. P., "Gaussian beams, Hamilton-Jacobi equations, and Finsler geometry," Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Vol. 297, 2003.

8. Kachalov, A. P., "Gaussian beams for Maxwell equations on a manifold," Journal of Mathematical Sciences, Vol. 122, No. 5, 2004.

9. Kachalov, A. P., "Nonstationary electromagnetic Gaussian beams in inhomogeneous anisotropic media," Journal of Mathematical Sciences, Vol. 111, No. 4, 2002.

10. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001.

11. Kozma, L. and L. Tamassy, "Finsler geometry without line elements faced to applications," Reports on Mathematical Physics, Vol. 51, 2003.
doi:10.1016/S0034-4877(03)80017-4

12. Antonelli, P. L., R. S. Insgarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, 1993.

13. Miron, R. and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and applications, Kluwer Academic Publishers, 1994.

14. Miron, R. and M. Radivoiovici-Tatoiu, Extended Lagrangian Theory of Electromagnetism, Vol. 27, No. 2, Reports on Mathematical Physics, 1989.

15. Asanov, G. S., Finsler Geometry, Relativity and Gauge Theories, 1985.

16. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill book company, 1960.

17. Naulin, R. and C. Pabst, "The roots of a polynomial depend continuously on its coefficients," Revista Colombiana de Matematicas, Vol. 28, 35-37, 1994.

18. Guillemin, V. and S. Sternberg, "Geometric asymptotics," Mathematical Surveys, No. 14, 1977.

19. Dahl, M., "Propagation of electromagnetic Gaussian beams using Riemann-Finsler geometry," Licentiate thesis, 2006.

20. Abraham, R. and J. E. Mardsen, Foundations of Mechanics, 2nd ed..