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Abstract—A Gaussian beam is an asymptotic solution to Maxwell’s
equations that propagate along a curve; at each time instant its energy
is concentrated around one point on the curve. Such a solution is of
the form

E = Re{eiP θ(x,t)E0(x, t)},
where E0 is a complex vector field, P > 0 is a big constant, and θ is a
complex second order polynomial in coordinates adapted to the curve.

In recent work by A. P. Kachalov, electromagnetic Gaussian beams
have been studied in a geometric setting. Under suitable conditions
on the media, a Gaussian beam is determined by Riemann-Finsler
geometry depending only on the media. For example, geodesics
are admissible curves for Gaussian beams and a curvature equation
determines the second order terms in θ.

This work begins with a derivation of the geometric equations
for Gaussian beams following the work of A. P. Kachalov. The novel
feature of this work is that we characterize a class of inhomogeneous
anisotropic media where the induced geometry is Riemannian. Namely,
if ε, µ are simultaneously diagonalizable with eigenvalues εi, µj , the
induced geometry is Riemannian if and only if εiµj = εjµi for some
i �= j. What is more, if the latter condition is not met, the geometry
is ill-behaved. It is neither smooth nor convex.

We also calculate Riemannian metrics for different media. In
isotropic media, gij = εµ δij and in more complicated media there
are two Riemannian metrics due to different polarizations.
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1. INTRODUCTION

When writing Maxwell’s equations using differential forms on a 3-
manifold these equations become completely differential-topological.
On the other hand, the constitutive equations become completely
metrical; these depend only on two Riemannian geometries. One
geometry describes permittivity and another geometry describes
permeability [1, 2]. This suggests that notions such as length, angle,
area, and volume, that is, geometry, is related to material properties.
For example, in vacuum, plane waves propagate along straight lines,
but at plane boundaries, the wave bends at an angle depending on the
material properties.

Unfortunately, the above two geometries have no direct
geometrical or physical interpretations related to wave propagation
(or, none has been found so far.) One sought feature could be that
geodesics would describe the path traversed by a ray of light. However,
since such a path depends on the polarization of the wave, and since
the above metrics do not take polarization into account, this is not the
case. In view of the above, it is motivated to study the relation between
media and the geometry determining propagation of electromagnetic
waves. This is the topic of the present work.

We assume that the media is anisotropic, non-homogeneous,
smooth, time-, and frequency-independent, and we assume that the
media matrices are simultaneously diagonalizable (see Section 4). In
addition, we shall work exclusively with Gaussian beam solutions to
Maxwell’s equations. These are asymptotic solutions that propagate
along a curve such that at every time instant the entire energy of the
solution is completely concentrated around one point on the curve. In
fact, the envelope of the solution is a Gaussian bell curve, hence the
name. A main property of these solutions is that their propagation
and form are completely determined by a curve on the underlying
manifold and three tensors on that curve. Since these solutions
depend on very little information, they are very convenient to work
with; the curve and the three tensors are determined by a Hamilton
equation and a Riccati equation, which are both ODE’s that are easy
to solve numerically. Gaussian beams are also closely related to the
classical Debye expansion [3], and they have been used to study the
anisotropic wave equation [4–6]. In recent work by A. P. Kachalov [7–
9], electromagnetic Gaussian beams have been studied in a Riemann-
Finsler setting; under suitable assumptions, Gaussian beams are
determined by Riemann-Finsler geometry depending only on the
media. The present work relies heavily on the last three articles [7–
9]. Essentially, a Finsler geometry on a manifold is a norm for tangent
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vectors whose unit spheres do not need to be ellipsoids (see for example
[10, 11]).

The main result of this work is to characterize a class of media
where Gaussian beams propagate using Riemannian geometry. This
result shows that when ε and µ are simultaneously diagonizable, it is
not possible to model propagation of Gaussian beams using Finsler
geometries that are not Riemannian. This is not a dead end for
the geometrization of electromagnetism, or for Finsler geometry in
electromagnetism. For example, there are non-Riemannian Finsler
geometries related plane waves in crystals [12], and there is works
studying the geometry of electromagnetism on the tangent bundle
[13, 14]. There is also a vast literature on Finsler geometry in physics
in general [11, 12, 15]. However, the present result gives a class
of media where the theory of Gaussian beams is valid. This is of
both theoretical and practical use. The present work also motivates
the search for geometries on the tangent and cotangent bundle of
the manifold. For example, in symplectic geometry, physical objects
such as caustics might be non-smooth on the base manifold although
everything is smooth on the cotangent bundle. Lastly, let us emphasize
that Gaussian beams and equations governing these are independent
of local coordinates.

The work is organized as follows. Section 2 reviews the
Hamilton-Jacobi equation, and in Section 3 we define Gaussian beams
and formulate geometric equations determining their propagation.
Section 4 contains the aforementioned characterization result, and
Section 5 gives examples of Riemannian geometries for different media.

2. DEBYE EXPANSION IN MAXWELL’S EQUATIONS

By a manifold M we mean a Hausdorff, second countable, topological
manifold with smooth transition maps. Its tangent and cotangent
bundles are denoted by TM and T ∗M , respectively, and the set of
p-forms on M by ΩpM . Vector fields on M are denoted by X(M).
Let us also assume that I is an open interval (and sometimes also the
identity matrix). Starting from Section 3 we will also employ Einstein’s
summing convention.

2.1. Maxwell’s equations in differential forms

Suppose M is a 3-dimensional oriented manifold. Then the dynamical
Maxwell’s equations read

dE = −∂B
∂t

,
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dH =
∂D

∂t
,

where E,H ∈ (Ω1M) × I and B,D ∈ (Ω2M) × I are the smooth
electromagnetic field quantities depending on time t ∈ I. Also, we
assume that the constitutive equations can be written as

D = ∗εE,

B = ∗µH,

where ∗ε and ∗µ are the Hodge star operators induced by time-
independent Riemannian geometries gε, gµ, respectively [1, 2].

We always assume that E,D,B,H are real. However, we also
need complex forms, which we denote by Ωp(M,C). These are simply
p-forms whose component functions are possibly complex valued.
Similarly, we define T ∗(M,C). Since the transition functions are real
valued, the real part �{·} of a complex form is well defined. On a
Riemannian manifold, the (complex) Hodge star operator is the linear
operator

∗: Ωp(M,C) → Ωn−p(M,C)

that maps basis elements of Ωp(M,C) as

∗(dxi1∧ · · · ∧dxip) =
√

det g
(n−p)!g

i1l1 · · · giplpεl1···lp lp+1···lndx
lp+1∧· · · ∧dxln ,

where ε (�= ε) is the Levi-Civita permutation symbol. Also, since gij

is real, the �-operator commutes with the Hodge operator, that is,
∗ ◦ � = � ◦ ∗. Also, on a 3-manifold, ∗ = ∗−1 for p = 0, 1, 2, 3.

2.2. Debye Expansion

We next perform a Debye expansion [3] in Maxwell’s equations. That
is, we assume that the electric and magnetic fields E,H are of the form

E(x, t, P ) = �
{
eiP θ(x,t)

N∑
k=0

Ek(x, t)
(iP )k

}
, (1)

H(x, t, P ) = �
{
eiP θ(x,t)

N∑
k=0

Hk(x, t)
(iP )k

}
, (x, t) ∈M × I, (2)

where N ≥ 0, P > 0 is a (large) positive constant, Ek, Hk ∈
Ω1(M,C)× I, and θ ∈ C∞(M × I) is a complex valued phase function.

In what follows we will only be interested in solving the phase
function. Intuitively, one can think of θ as a function that determines
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how the wave propagates. For example, if E is a plane wave, then
Pθ = x·p−ωt, so in this case θ determines the direction of propagation.
A discussion on the role of P can be found in [6], and equations for
Ei, Hi are studied in [9]. Let us also point out that we do not have any
sources or boundary conditions. We only study how Gaussian beams
propagate assuming that they have been generated in some way.

Plugging the above trials into Maxwell’s equations and equating
terms of equal power (in the 1

(iP )k variable) inside �{·} yields
conditions

dθ ∧H0 =
∂θ

∂t
∗ε E0, (3)

dθ ∧ E0 = −∂θ
∂t

∗µ H0, (4)

and for k = 1, . . . , N − 1, conditions

−dθ ∧ Ek+1 −
∂θ

∂t
∗µ Hk+1 = ∗µ

∂Hk

∂t
+ dEk,

dθ ∧Hk+1 −
∂θ

∂t
∗ε Ek+1 = ∗ε

∂Ek

∂t
− dHk.

Our next aim is to derive the Hamilton-Jacobi equation (equation
12) for the phase function. This yields a sufficient condition on θ to
solve equations (3)–(4) that does not involve E0 and H0. The idea is
to show that θ is determined by the spectrum of a linear operator (L
in equation (6)) involving only the medium parameters. This is the
key result which makes it possible to study propagation of Gaussian
beams without solving the whole field.

With matrix notation equations (3)–(4) read(
∗ε 0
0 ∗µ

) (
0 dθ ∧ I

−dθ ∧ I 0

) (
E0

H0

)
=
∂θ

∂t

(
E0

H0

)
on M × I,

(5)
where dθ ∧ I is the operator α �→ dθ ∧ α for α ∈ Ωp(M,C).

Let us define the following family of linear operators:

L:T ∗(M,C) →
(
(Ω1

x(M,C))2 → (Ω1
x(M,C))2

)
,

L(η) =
(

∗ε 0
0 ∗µ

) (
0 η ∧ I

−η ∧ I 0

)
, η ∈ T ∗

x (M,C). (6)

Here we have not introduced any local coordinates. Thus L(η)
and its spectrum are well defined for each η ∈ T ∗(M,C).

Next we formulate equation (5) in local coordinates. For this
purpose, let xi be local coordinates for M on a set U ⊂ R

3, and let



270 Dahl

U ⊂M be the corresponding chart. Furthermore, let e,h:U × I → C
3

be complex covector fields representing E0, H0 in these coordinates,
and let us denote by θ also the local representative θ:U → C of
θ:M → C. From the argument of θ it will always be clear which θ
is meant. Then equation (5) restricted to U × I is equivalent to

L′(x,∇θ)
(

e
h

)
=
∂θ

∂t

(
e
h

)
on U × I, (7)

where ∇θ is the usual gradient in R
3, and

L′(x, z) = χ−1(x)J(z), (x, z) ∈ U × C
3,

J(z) =
(

0 z × I
−z × I 0

)
, z ∈ C

3,

χ =
(
ε 0
0 µ

)
on U.

Here z × I is the 3× 3 matrix representing the mapping p �→ z × p for
p ∈ C

3. Also, ε, µ are the 3× 3 matrices (defined on U) whose (i, j):th
elements are

εij =
√

det gε g
ij
ε , µij =

√
det gµ g

ij
µ . (8)

It follows that ε and µ are symmetric positive definite matrices. In
fact, these are the “usual” matrices appearing in R

3 [19].
Let us further rewrite equation (7) in a slightly different form. For

this purpose, let us introduce M :U × C
3 → C

6×6, and v:U × I → C
3,

by

M(x, z) = χ−1/2(x)J(z)χ−1/2(x),

v = χ1/2(x)
(

e
h

)
,

whence equation (7) is equivalent to

M(x,∇θ)v =
∂θ

∂t
v on U × I. (9)

If η ∈ T ∗(U ,C), we denote by M(η) the matrix M evaluated at
the local coordinates for η. We also denote the spectrum of a matrix
L or a linear operator L by σ(L).

Lemma 2.1 (Properties of the M matrix) Let η ∈ T ∗(U ,C).
(i) If η is real, then M(η) is symmetric and has real eigenvalues.
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(ii) If η is real and non-zero, then M(η) has four non-zero eigenvalues,
and 0 is an eigenvalue of multiplicity 2.

(iii) 0 is an eigenvalue of multiplicity at least 2, and if λ is a non-zero
eigenvalue of M(η), then −λ is also an eigenvalue.

(iv) The spectra of L,L′ and M coincide,

σ(L(η)) = σ(L′(η)) = σ(M(η)),

and the latter two spectra do not depend on the local coordinates.

Proof. Property (i) is immediate. For Property (ii), let (x, z) be
local coordinates for η. As χ(x) is invertible, rank M(η) = 2, so
dim kerM(η) = 2. Since M is symmetric, it is diagonalizable [16];
there is an orthogonal matrix R such that M(η) = R−1ΛR where
Λ is an diagonal matrix containing the eigenvalues of M(η). Thus
dim ker Λ = 2, and 0 is an eigenvalue of multiplicity (precisely) 2, and
property (ii) follows. For property (iii), let (x, z) ∈ U × C

3, and let

A = ε−1/2(x) · z × I · µ−1/2(x),

whence

M(η) =
(

0 A
A T 0

)
.

If L is an invertible 3 × 3 matrix, then(
L A
A T L

)
=

(
I 0

A TL−1 I

)
·
(
L 0
0 L−A TL−1A

)
·
(
I L−1A
0 I

)
,

whence

det(M(η) − λI) = −det(A TA− λ2I), λ ∈ C (10)

and property (iii) follows. The first equality in the last property follows
as L′(η) is the matrix representation of L(η) in the basis (dxi, dxj). The
last equality follows since σ(AB) = σ(SABS−1) = σ(SAS) when A,B
are invertible matrices and B = S2. �

Using equation (10) and the fact that roots of polynomials can
continuously be parametrized by functions that are lexicographically
ordered [17], one can prove existence of continuous functions

h+, h−:T ∗(U ,C) → C,

such that these parametrize the spectrum of L,

σ(L(η)) = ±{0, h+(η), h−(η)}, η ∈ T ∗(U ,C),
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and h± are strictly positive on T ∗U \ {0}. However, the h±-functions
are not uniquely determined by L. For example, if they coincide
on a sphere in U , one can glue together an alternative continuous
parametrization of the spectrum. Nevertheless, these functions will
be important in what follows; under suitable assumptions on the
media, the functions induce Riemannian geometries and Gaussian
beams propagate along geodesics of these.

In the above we have only studied the h±-functions locally. This
should be enough for almost all practical electromagnetic applications.
Global questions about the phase function are considerably more
involved [18].

From the definitions of the h±-functions it follows that a sufficient
condition on θ to be a solution to equation (5) is that [7]

∂θ

∂t
= 0, or

∂θ

∂t
= ±h±(dθ), (11)

where the ±-signs are independent. Essentially, dθ is the direction of
propagation. Thus if ∂θ

∂t = 0, equations (3)–(4) state that E0, H0 are
parallel to the direction of propagation. Typically such solutions decay
exponentially. Therefore we shall not study these. The first ±-sign in
equation (11) is also irrelevant as reversing time exchanges this sign.
In conclusion we have shown that the phase function θ:U × I → C can
be solved from

∂θ

∂t
= h±(dθ). (12)

This equation is known as the Hamilton-Jacobi equation.

3. GAUSSIAN BEAMS

Next we study the Hamilton-Jacobi equation on a curve and assume
that the phase function is a second order polynomial on that curve.
Such phase functions will be called Gaussian beams. We shall do all the
analysis in local coordinates. However, once we have derived equations
for Gaussian beams we show that everything is coordinate independent.

Let us choose one of h± and denote that by h. In U the Hamilton-
Jacobi equation then reads

∂θ

∂t
+ h(x,∇θ) = 0 on U × I.

Here h is the (known) local representative h:U × C
3 → C of

h:T ∗(U ,C) → C, and θ:U × I → C is the local representative of the
unknown phase function θ:U × I → C.
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Logically, we could insert Section 4 right after Section 2; it only
calculates the h±-functions for specific media. However, for a more
coherent presentation, Section 4 follows this section. Nevertheless, by
Proposition 4.3, we can assume that h2 restricted to real arguments is
a smoothly varying positive definite quadratic form on T ∗U . That is,
for some smooth positive definite 2-tensor gij on M ,

h(ξ) =
√
gij(x)ξiξj , ξ ∈ T ∗

xU ,

and gij = (gij)−1 is a Riemannian inner product on U . For the rest of
this section, we assume that h has this form for real arguments, but
by the previous section we also know that h is defined for complex
arguments. We will see that Gaussian beams do not depend on the
complex behaviour of h.

Let L:T ∗M → TM be the Legendre transformation given by h,

L(ξ) = Li(ξ)
∂

∂xi
, ξ ∈ T ∗

xM,

where Li(ξ) = gij(x)ξj . The inverse Legendre transformation is

L−1(y) = L−1
i (y)dxi, y ∈ T ∗

xM

where L−1
i (y) = gij(x)yj . Let Γi

jk be the Christoffel symbols,

Γijk =
1
2

(
∂gik

∂xj
+
∂gij

∂xk
− ∂gjk

∂xi

)
,

Γi
jk = girΓrjk, Γi

jk = Γi
kj .

On overlapping coordinates (x̃i), we have transformation rules

∂x̃l

∂xi
Γi

jk =
∂2x̃l

∂xj ∂xk
+
∂x̃r

∂xj

∂x̃s

∂xk
Γ̃l

rs.

Let us introduce functions N i
j on the tangent bundle defined as [10]

N i
j = Γi

jky
k. (13)

We will also need the Riemann curvature tensor, with components

Rm
ijk =

∂Γm
ik

∂xj
−
∂Γm

ij

∂xk
+ Γs

ikΓ
m
js − Γs

ijΓ
m
ks,

and transformation rules Rm
ijk = ∂x̃l

∂xi
∂x̃r

∂xj
∂x̃s

∂xk
∂xm

∂x̃p R̃
p
lrs.
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3.1. Gaussian Beams

Definition 3.1 (Gaussian beam) Suppose θ:U × I → C is a
smooth function, c: I → U is a smooth curve, and cU : I → U is
its local representation. Furthermore, let φ: I → C, p: I → C

3, and
H: I → C

3×3 be coefficients in the Taylor expansion of θ on cU ,

φ(t) = θ(cU (t), t),

pj(t) =
∂θ

∂xj
(cU (t), t),

Hjk(t) =
∂2θ

∂xj ∂xk
(cU (t), t).

Then we say that θ corresponds to a Gaussian beam at c(t) if

p(t) = (pi(t)) is non-zero,
φ(t) and p(t) are real,
The matrix H(t) = (Hij(t)) has positive definite imaginary part.

We shall also say that an electromagnetic field as in equations
(1)–(2) is a Gaussian beam on c if θ is a Gaussian beam on c(t) for all
t. Let us first motivate the name and then show that the definition
does not depend on local coordinates.

If c, θ, p,H are as above, then for (x, t) ∈ U × I,

θ(x, t) = φ(t) + pj(t) zj +
1
2
Hjk(t) zjzk + o(|z|3),

z = z(x, t) = x− cU (t) ∈ R
3. (14)

To see this, fix t ∈ I and let s(z) = (cU (t) + z, t). The above formula
then follows by expanding θ ◦ s using Taylor’s theorem. Thus

|eiPθ(x,t)| ≈ e−P/2 zT ·�H·z. (15)

As P > 0 is large, this means that a Gaussian beam decreases very
rapidly away from c(t). This motivates the name Gaussian beam and
the assumptions on φ, p and H. The above equation also shows that
�H represents the “shape” of the Gaussian beam.

Transformation rules for φ, p,H

If (x̃i) are other coordinates overlapping the (xi)-coordinates, then the
coefficients φ, pi, Hij transform as

φ̃(t) = φ(t),
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p̃j(t) =
∂xr

∂x̃j
◦ c(t) pr(t),

H̃jk(t) =
(
∂xr

∂x̃j

∂xs

∂x̃k

)
◦ c(t)Hrs(t) +

∂2xr

∂x̃j ∂x̃k
◦ c(t) pr(t),

and Definition 3.1 is well defined.

3.2. Equations for c, φ, p,H

Suppose c: I → U is a smooth curve, z is as in equation (14), and

θ(x, t) = φ(t) + pj(t) zj +
1
2
Hjk(t) zjzk

is a Gaussian beam for all t. Next we derive sufficient conditions on
c, p,H for θ to be an solution to the approximate Hamilton-Jacobi
equation

∂θ

∂t
(cU (t), t) + h(x,∇θ(cU (t), t)) = o(|z|3) onU × I. (16)

By differentiating we obtain

∂θ

∂t
=

(
dφ

dt
− pj

dcj

dt

)
+

(
dpj

dt
−Hjr

dcr

dt

)
zj +

1
2
dHjk

dt
zjzk,

∂θ

∂xj
= pj +Hjrz

r,

where cU = (c1, c2, c3). It follows that

h(x,∇θ(x, t)) = h(z + cU (t), pr +Hrs(t)zs)
= h∗(z, t),

where h∗ is defined on the last line, and expanding h∗ yields

h(x,∇θ(x, t)) = h∗(0, t) +
∂h∗

∂zj
(0, t) zj +

1
2
∂2h∗

∂zj∂zk
(0, t) zjzk + o(|z|3).

By the chain rule,

h∗(0, t) = h ◦ γ(t),
∂h∗

∂zj
(0, t) =

∂h

∂xj
◦ γ(t) +

∂h

∂ξk
◦ γ(t)Hjk,

∂2h∗

∂zj∂zk
(0, t) = (BH +HBT +HCH +D)jk,
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where γ: I → U ×R
3 \ {0} and matrices B,C,D: I → C

3×3 are defined
by

γ(t) = (c(t), p(t)),

Bk
j (t) =

∂2h

∂xj ∂ξk
◦ γ(t),

Cjk(t) =
∂2h

∂ξj ∂ξk
◦ γ(t),

Djk(t) =
∂2h

∂xj ∂xk
◦ γ(t),

such that j is the row index and k is the column index. Let us denote
by γU the curve γU : I → T ∗U induced by γ. Then the above equations
for B,C,D are also valid when we replace γ with γU .

From the above we obtain the following sufficient conditions on
c, φ, p,H to solve equation (16):

dφ

dt
− pj

dcj

dt
+ h ◦ γ = 0, (17)(

dpj

dt
+

∂h

∂xj
◦ γ

)
+

(
∂h

∂ξk
◦ γ − dck

dt

)
Hjk = 0, (18)

dH

dt
+BH +HBT +HCH +D = 0. (19)

Hamilton equations for γ = (c, p)

Taking the imaginary part of equation (18) yields

dcj

dt
=

∂h

∂ξj
◦ γ (20)

and combining this with equation (18) yields

dpj

dt
= − ∂h

∂xj
◦ γ. (21)

These equations are the Hamilton equations for the curve γ: I →
U × R

3 \ {0}. Let us equip T ∗U \ {0} with the canonical symplectic
structure, and let Xh ∈ X(U) be the Hamiltonian vector field induced
by h. By basic results from symplectic geometry (see e.g., [19, 20]), it
follows that a sufficient and necessary condition for γ to solve equations
(20)–(21) is that γU is an integral curve of Xh. This is the coordinate
invariant construction for γ. To solve γ, we need an initial condition



Progress In Electromagnetics Research, PIER 60, 2006 277

γ0 ∈ T ∗U \ {0}. Since γ0 is real, it follows that γU is real, so p satisfies
the condition in Definition 3.1. We can normalize the initial condition
such that h(γ0) = 1. In fact, if γU is a solution from an initial condition
γ0 ∈ T ∗U \{0}, then λγU is a solution from the initial condition λγ0 for
λ > 0. With this normalization, it follows (again by basic symplectic
geometry) that h ◦ γ = 1 identically.

Appendix A shows that solutions to Hamilton’s equations for h
are in one to one correspondence with geodesics of gij . In particular,
Gaussian beams propagate along geodesics.

φ is constant

Combining equation (17) and (20) yields dφ
dt =

(
ξk

∂h
∂ξk

)
◦ γ − h ◦ γ, so

φ is constant by Euler’s theorem for homogeneous functions [19].

Riccati equation for H

It remains to analyze equation (19) which is a matrix Riccati equation.
The below proposition shows that it is uniquely solvable, and if H
satisfies the condition in Definition 3.1 at t = 0, then H satisfies the
condition for all t.

Proposition 3.2 ([5]) Suppose H0 is a symmetric 3 × 3 matrix such
that �H0 is positive definite. Then equation (19) has a unique solution
H on I such that

(i) H(0) = H0,
(ii) H is symmetric and �H is positive definite for all t.

The Riccati equation is scaling invariant with respect to the
normalization of γ. In fact, suppose H is a solution to equation (19)
on a curve γ from an initial condition H0. Then for λ > 0, λH is a
solution to equation (19) on the curve λγ from λH0. This follows as C
is (−1)-homogeneous, B is 0-homogeneous, and D is 1-homogeneous.
In view of this invariance, it suffices to study equation (19) on a curve
γ satisfying h ◦ γ = 1. Let us also point out that H depends only on
h for real arguments.

Let us define

Gij(t) = Hij(t) − (Γr
ijL−1

r ) ◦ L ◦ γ(t).

Then
G(t) = Gij(t) dxi ⊗ dxj

∣∣∣
c(t)
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is a 2-tensor on c with complex components (see Appendix B) and
�G = �H. In other words, by perturbing the real part of H we have
made H into a 2-tensor.

To find the equation for G, let us treat Gij as a matrix, and let
Λ be the symmetric matrix Λij = (Γr

ijL−1
r ) ◦ L ◦ γ. Then G = H − Λ,

and equation (19) is equivalent to

dG

dt
+ B̂G+GB̂T +GCG+ D̂ = 0,

where

B̂ = B + ΛC,

D̂ = D +
dΛ
dt

+ B̂Λ + ΛB̂T − ΛCΛ.

The next lemma will enable us to give a coordinate independent
equation for G. It is proven in a Riemannian setting in [5], and in a
Riemann-Finsler setting in [7] (see also [19]). An outline of the proof
(in the present Riemannian setting) is given in Appendix C.

Lemma 3.3 Assuming that h ◦ γ = 1, quantities C, and D̂ satisfy

Cij = (gij − yiyj) ◦ ĉ,
D̂ij = −Rij ◦ ĉ,

where ĉ: I → TM is the canonical lift of c, and

Rij = Rm
ijky

kL−1
m .

By equation (B1), it follows that the equation for G is(
(DċG)ij + (GCG)ij + D̂ij

)
dxi ⊗ dxj

∣∣∣
c(t)

= 0.

Since each term in the parenthesis is a 2-tensor on c, this is a coordinate
independent equation for G. From the equations in local coordinate
we also know that from an initial condition the equation has a unique
solution.

Finally let us point out that �G defines a positive definite inner
product on Tc(t)M for all t. This gives an second “geometry” induced
by an electromagnetic media. Its study would provide an interesting
topic for further study.
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4. ELECTROMAGNETIC MEDIA

As in the previous section we consider a local chart U ⊂ R
3 of M ,

and assume that ε, µ:U → R
3×3 are the positive definite matrices

representing the electromagnetic media on U as in equation (8). Let
us further assume that ε, µ can be written as

ε = R−1ΛεR, µ = R−1ΛµR on U (22)

for a smooth orthogonal matrix R:U → R
3×3, and for some smooth

diagonal matrices Λε = diag (ε1, ε2, ε3), Λµ = diag (µ1, µ2, µ3)
containing the strictly positive eigenvalues of ε and µ.

Let us recall that a matrix is orthogonally diagonalizable if and
only if the matrix is symmetric [16]. In consequence, ε and µ can always
pointwise be diagonalized separately. Our next aim is to calculate
the h±-functions in different media. To obtain explicit, and not too
complicated expressions for x these, we assume that equation (22)
holds. Examples of media satisfying this condition are:

(i) Isotropic media where ε and µ depend only on two scalar functions.
(ii) ε is positive definite, and µ is isotropic.
(iii) µ is positive definite, and ε is isotropic.
(iv) µ and ε are proportional [1].

Of these, the second class is maybe of most interest, as it can be
seen as a model for biological tissue. Namely, in biological tissue there
is no magnetic activity, but due to muscles and bones (which have a
fibred structure), ε is anisotropic.

In this section we will only study the h±-functions for real
arguments (see beginning of Section 3). Let us also point out that
this section contains many algebraic computations which are most
conveniently done with a computer.

4.1. The h±-functions

If Q ∈ R
3×3 is invertible and u, v ∈ R

3, then

QT (u× v) = detQ (Q−1u) × (Q−1v).

Therefore, if ξ is the mapping z �→ ξ(z) = detR Rz, it follows that

M(x, z) =(
R 0
0 R

)−1 (
Λε 0
0 Λµ

)−1/2 (
0 ξ×I

−ξ×I 0

) (
Λε 0
0 Λµ

)−1/2 (
R 0
0 R

)
.
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If (x, z) ∈ U ×R
3 and ξ = ξ(z), then (using computer algebra) we

find that λ ∈ σ(M(x, z)) if and only if

λ2(λ4 − ‖S · ξ‖2 λ2 + ‖F · ξ‖2 ‖N · ξ‖2) = 0,

where

S = diag
(√

e22m
2
3 + e23m

2
2,

√
e21m

2
3 + e23m

2
1,

√
e21m

2
2 + e22m

2
1

)
,

F = diag (e2e3, e1e3, e1e2),
N = diag (m2m3,m1m3,m1m2),
ei = 1/

√
εi, mi = 1/

√
µi,

√
· is the positive square root, and ‖ · ‖ is the Euclidean norm. Hence

σ(M(x, z)) \ {0} =
{
± 1√

2

√
‖S · ξ‖2 ±

√
D

}
, (23)

where ±-signs are independent andD is the 4-homogeneous polynomial

D(x, z) = ‖S · ξ‖4 − 4‖F · ξ‖2 ‖N · ξ‖2.

Since σ(M) is real, D ≥ 0 for all (x, z) ∈ U × R
3. Our next task is

to define h±-functions from the above spectrum as in Section 2. Since
h± should be positive, it is clear that the first ±-sign should be + for
all (x, z) ∈ U × R

3. The choice of the second ±-sign is, however, not
so clear. For example, if for fixed x ∈ U , D vanishes on a small closed
curve of ‖z‖ = 1, then there are two ways to define h+ and h− inside
that curve. In the below (Lemma 4.2) we prove that D has no such
zeroes; either D vanishes identically, or it vanishes at finitely many
points on ‖z‖ = 1. By a topological argument (see [19]) one can then
show that for fixed x ∈ U , the second ±-sign can not depend on z. It
is therefore motivated to define

h±(x, z) =
1√
2

√
‖S · ξ‖2 ±

√
D, (x, z) ∈ U × R

3.

It is clear that h± are now continuous. However, these functions are not
necessarily uniquely determined by σ(M(x, z))\{0}. For example, if D
vanishes on a sphere in U , there are two ways to define the h±-functions
inside that sphere. We shall not study this somewhat problematic issue
further.

Let us point out that the h±-functions are 1-homogeneous and
h±(x, z) = 0 if and only if z = 0. Furthermore, the h±-functions do
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not change value under reflections in the z-variable. In particular, h±
are symmetric; h(x, z) = h(x,−z). In general, the h±-functions are
non-convex and non-smooth. Therefore they do not induce Finsler
geometries [10]. However, in Propositions 4.3 and 4.4 we characterize
when they are Finsler geometries. This yields a negative result.
Whenever the h±-functions define Finsler geometries, the geometry
is Riemannian.

4.2. The ∆ij-symbols

For i, j = 1, 2, 3 let
∆ij = e2im

2
j − e2jm

2
i .

These symbols will be central in what follows. We will show that the
h±-functions behave qualitatively differently depending on how many
of these ∆ij-symbols vanish. To prove this we will need two lemmas,
which rely on some alternative expressions for D:

D = ∆2
23ξ

4
1 + ∆2

13ξ
4
2 + ∆2

12ξ
4
3

+2∆23∆13ξ
2
1ξ

2
2 − 2∆23∆12ξ

2
1ξ

2
3 + 2∆13∆12ξ

2
2ξ

2
3 (24)

= (∆23ξ
2
1 + ∆13ξ

2
2 + ∆12ξ

2
3)

2 − 4∆12∆23ξ
2
1ξ

2
3 (25)

= (∆23ξ
2
1 + ∆13ξ

2
2 + ∆21ξ

2
3)

2 − 4∆21∆13ξ
2
2ξ

2
3 (26)

= (∆32ξ
2
1 + ∆13ξ

2
2 + ∆12ξ

2
3)

2 − 4∆13∆32ξ
2
1ξ

2
2 . (27)

The first lemma shows that if two ∆ij-symbols vanish, then the
third symbol also vanishes. The second lemma gives all the real zeroes
of D in ξ-coordinates.

Lemma 4.1 (∆ij-symbols) Suppose i, j, k ∈ {1, 2, 3} are distinct.

(i) If ∆ij = 0, then
sign ∆ik = sign ∆jk,

where sign is the signum function; sign (t) = 1, sign (−t) = −1
for t > 0 and sign (0) = 0.

(ii) If one ∆ij-symbol is zero, then
√
D = |∆23|ξ2

1 + |∆13|ξ2
2 + |∆12|ξ2

3 . (28)

(iii) If ∆ij > 0 and ∆jk > 0, then ∆ik > 0.
(iv) If all ∆23,∆23,∆12 are non-zero, then the possible sign

configurations are:
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1 2 3 4 5 6
∆23 + + + − − −
∆13 + + − + − −
∆12 + − − + + −

Proof. Property (i) follows since ∆ik = (mi/mj)2∆jk, Property (ii)
follows using (i) and equations (25)–(27), and property (iii) follows
by a direct calculation. Property (iv) follows since Property (iii)
implies that sign configurations ∆23 > 0,∆31 > 0,∆12 > 0, and
∆32 > 0,∆13 > 0,∆21 > 0 are impossible, and all other configurations
are achieved by media e2i ,m

2
i ∈ {1, 2}. �

Lemma 4.2 (Real zeroes of D)
(i) If two (or all) of the ∆ij-symbols are zero, then D is identically

zero.
(ii) If only ∆ij = 0, then the zeroes of D are the line {(ξ1, ξ2, ξ3) ∈

R
3 : ξi = 0, ξj = 0}.

(iii) If all ∆ij-symbols are non-zero, then the zeroes of D (modulo
scalings and reflections) are

(a) ξ = (1, 0,
√

∆23
∆12

) for sign configurations 1 and 6,

(b) ξ = (0, 1,
√
−∆13

∆12
) for sign configurations 2 and 5,

(c) ξ = (
√
−∆13

∆23
, 1, 0) for sign configurations 3 and 4.

Proof. The first two properties follow from the previous lemma. If sign
configuration 2–5 holds, then ∆12∆23 < 0, and equation (25) gives two
possibilities,

ξ1 = 0, ∆13ξ
2
2 + ∆12ξ

2
3 = 0,

ξ3 = 0, ∆23ξ
2
1 + ∆13ξ

2
2 = 0.

Since we are seeking roots only modulo scaling, we can assume that
ξ2 = 1 or ξ2 = 0. However, we can dismiss the latter alternative as
ξ2 = 0 implies that ξ = 0. The choice ξ2 = 1 yields two possibilities

ξ1 = 0, ξ2 = 1, ξ3 =
√

−∆13

∆12
,

ξ1 =
√

−∆13

∆23
, ξ2 = 1, ξ3 = 0,

where we have excluded the −-branches; these can always be recovered
by reflection of the coordinates. Inspecting the signs yields roots (b)
and (c). If sign configuration 1 or 6 holds, then ∆21∆13 < 0, and a
similar analysis to the above gives root (a). �
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4.3. Classification of Media

Using the ∆ij-symbols we can divide media into three classes of
increasing complexity: 1◦ all symbols vanish, 2◦ one symbol vanishes,
or 3◦ none of the symbols vanish.

If two of the ∆ij-symbols vanish, then the third also vanishes, and

h+(x, z) = h−(x, z) =
1√
2
‖S · ξ‖.

Here it is clear that the h±-functions are uniquely determined from
the spectrum; the functions do not depend on the choice of the second
±-sign in equation (23).

The equivalence of (ii) and (iii) in the next lemma was proven in
[8].

Proposition 4.3 (Characterization of media I) The following are
equivalent:

(i) At least two of ∆23,∆13,∆12 vanish for all x ∈ U .
(ii) h+ = h− on U × R

3.
(iii) The medium matrices satisfy

ε = ρ2µ (29)

for some strictly positive smooth function ρ:U → R.

Proof. By the previous lemma, (i) implies (ii). On the other hand, if
(ii) holds, then D is the zero polynomial, that is, by equation (24),
all ∆ij :s are zero. If property (iii) holds, then mi = ρei, and property
(i) follows. The other direction follows using the definition of the ∆ij-
symbols. �

Proposition 4.4 (Characterization of media II) Pointwise the
following are equivalent:

(i) At least one of ∆23,∆13, ∆12 vanishes.
(ii) The functions h2

± are positive definite quadratic forms of ξ.

(iii) h+, h− are smooth on R
3 \ {0}.

(iv) h− is convex on R
3.

Proof. ((i) ⇒ (ii)) Suppose that one of ∆23,∆13, ∆12 is zero. (If two
of these are zero, then the third is also zero, and the claim follows.)
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Then by equation (28), we have

h2
± =

1
2
((e22m

2
3 + e23m

2
2 ± |∆23|)ξ2

1

+(e21m
2
3 + e23m

2
1 ± |∆13|)ξ2

2

+(e21m
2
2 + e22m

2
1 ± |∆12|)ξ2

3).

Since e2im
2
j +e2jm

2
i ±|∆ij | is always positive, the claim follows. For the

other direction (ii) ⇒ (i), suppose that h2
± are quadratic forms and all

∆ij are non-zero. Then
√
D must be a polynomial, say, α2 = D, and

α must be of the form

α = a1ξ
2
1 + a2ξ

2
2 + a3ξ

2
3

for some real ai. Thus

D = a2
1ξ

4
1 + a2

2ξ
4
2 + a2

3ξ
4
3 + 2a1a2ξ

2
1ξ

2
2 + 2a1a3ξ

2
1ξ

2
3 + 2a2a3ξ

2
2ξ

2
3 ,

and equation (24) implies that

a1a2 = ∆23∆13,

a1a3 = −∆23∆12,

a2a3 = ∆13∆12.

This means that two of a1a2, a1a3, a2a3 are positive and one is negative.
This is a contradiction, so at least one ∆ij must vanish. It is clear that
(ii) ⇒ (iii). To prove (iii) ⇒ (i), suppose that h± are smooth on
R

3 \ {0} and all ∆ij are non-zero. Let us furthermore assume that
sign configuration 1 or 6 holds. (The analysis for the other cases is
completely analogous.) In view of Lemma 4.2, let

γ(t) = (1, t,
√

∆23

∆12
), t ∈ R,

whence √
D ◦ γ =

√
t2∆13(4∆23 + ∆13t2).

Since ∆13,∆23 are non-zero,
√

4∆23∆13 + ∆2
13t

2 > 0 is smooth, and√
t2 = |t| is smooth; a contradiction. The implication (ii) ⇒ (iv) is

clear. To complete the proof, let us show that (iv) ⇒ (i). Suppose
h− is convex and all ∆ij are non-zero. Then we can introduce new
coordinates η = η(ξ) = η(z),

ξ1 =
1√
|∆23|

η1, ξ2 =
1√
|∆13|

η2, ξ3 =
1√
|∆12|

η3.
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Then
h±(x, z) =

1√
2

√
α23η2

1 + α13η2
2 + α12η2

3 ±
√
D,

where

D = η4
1 + η4

2 + η4
3 + 2σ23σ13η

2
1η

2
2 − 2σ23σ12η

2
1η

2
3 + 2σ13σ12η

2
2η

2
3,

αij =
e2im

2
j + e2jm

2
i

|∆ij |
=

e2im
2
j + e2jm

2
i

|e2im2
j − e2jm

2
i |
, σij = sign ∆ij .

Let us first assume that sign configuration 1 or 6 holds. Then
η = (1, 0, 1) is a root for D, so let

a = (1, 0, 1 + t), b = (1, 0, 1 − t), t ∈ (0, 1)

in η-coordinates. As h− is convex, h−(a+b
2 ) ≤ 1

2h−(a) + 1
2h−(b), so

2
√
α23 + α12 ≤

√
α23 + α12(1 − t)2 − (2 − t)t

+
√
α23 + α12(1 + t)2 − (2 + t)t, t ∈ (0, 1),

a contradiction with Lemma 4.5. If sign configuration 2 or 5 holds,
then η = (0, 1, 1) is a root for D, and considering

a = (0, 1, 1 + t), b = (0, 1, 1 − t), t ∈ (0, 1)

yields the result. If sign configuration 3 or 4 holds, then η = (1, 1, 0)
is a root for D, and considering

a = (1 + t, 1, 0), b = (1 − t, 1, 0), t ∈ (0, 1)

yields the result. �

Lemma 4.5 (An inequality for the square root) Suppose α, γ > 0.
Then there exists a t ∈ (0, 1) such that√

α+ γ(1 − t)2 − (2 − t)t+
√
α+ γ(1 + t)2 − (2 + t)t < 2

√
α+ γ.

Proof. The claim follows by squaring the contrapositive inequality
twice with computer algebra. �

5. GEOMETRIES INDUCED BY MEDIA

Example 5.1 (All ∆ij-symbols are zero) If ε = ρ2µ, then mi = ρei

and
h±(x, z) = ρ‖diag (e2e3, e1e3, e1e2) · ξ‖.
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In particular, if the medium is isotropic, that is, ε1 = ε2 = ε3,
µ1 = µ2 = µ3, then

h+(x, z) = h−(x, z) =
1√

ε1(x)µ1(x)
‖z‖.

Here we can recognize the “phase velocity” 1√
ε1(x)µ1(x)

, which is now

a function of x ∈ U . �

Example 5.2 (One ∆ij-symbol is zero) Suppose ∆23 = 0, and
∆12,∆13 > 0. Then

h+(x, z) = ‖diag (e2m3, e1m3, e1m2) · ξ‖,
h−(x, z) = ‖diag (e3m2, e3m1, e2m1) · ξ‖.

In particular, if Λε = (ε1, ε2, ε2), Λµ = (µ1, µ2, µ2), then

h+(x, z) = m2‖diag (e2, e1, e1) · ξ‖,
h−(x, z) = e2‖diag (m2,m1,m1) · ξ‖.

These expressions are somewhat surprising; the order of e1 and e2
are reversed. Another interesting special case is Λε = (ε1, ε2, ε2),
Λµ = (µ1, µ1, µ1), whence

h+(x, z) = m1‖diag (e2, e1, e1) · ξ‖,
h−(x, z) = m1e2‖z‖.

In other words, if there is no magnetic anisotropy, then h− will be a
scaled Euclidean norm. �

Example 5.3 (All ∆ij-symbols are non-zero) If all ∆ij-symbols
are non-zero, then the h±-functions are non-convex and non-smooth.

In Figure 1, h± are plotted in media mi = 1, e1 = 3, e2 = 2, e1 = 1,
whence all ∆ij > 0. The first figure shows that both functions have a
| · |-singularity in the y = 0 plane. From the figures we also see that
h− is not convex. �

Example 5.4 (Induced Riemannian geometries) In isotropic
media the induced Riemann geometry is

g±,ij(x) = ε1(x)µ1(x)δij .

and in the media of Example 5.2,

g+,ij(x, z) = (R−1 · diag (ε2µ3, ε1µ3, ε1µ2) ·R)ij ,

g−,ij(x, z) = (R−1 · diag (ε3µ2, ε3µ1, ε2µ1) ·R)ij .

�
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Figure 1. Cross sections of unit spheres of h+ (solid line) and h−
(dashed line) in the (x > 0, y > 0)-quadrant for different values of y.
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APPENDIX A. HAMILTON EQUATIONS AND
GEODESICS

Let us first derive some identities we shall need in Appendix A and C.
Using ∂gij

∂xk = Γijk + Γjik and the identity (A−1)′ = −A−1A′A−1
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for the derivative of an inverse matrix we obtain:

∂L−1
j

∂xk
= (Γijk + Γjik)yi, (A1)

∂Lj

∂xk
= −gjm(Γlmk + Γmlk)Ll, (A2)

∂Lj

∂ξk
= gjk,

∂L−1
j

∂yk
= gjk, (A3)

∂h2

∂xk
= −2ΓmnkLmLn, (A4)

∂h

∂xk
= −1

h
ΓmnkLmLn, ξ �= 0, (A5)

∂h

∂ξk
=

1
h
Lk, ξ �= 0. (A6)

The last identity implies that if γ = (c, p) is a solution to
Hamilton’s equations with h ◦ γ = 1, then

dci

dt
= Li ◦ γ, or ĉ = L ◦ γ. (A7)

Proposition A.5 If γ = (c, p) is a solution to Hamilton’s equations
such that h◦γ = 1, then c is a pathlength parametrized geodesic, i.e.,

d2ci

dt2
+ Γi

jk ◦ c dc
j

dt

dck

dt
= 0, (A8)

gij ◦ c
dci

dt

dcj

dt
= 1. (A9)

Conversely, if c is a pathlength parametrized geodesic, then γ = L−1 ◦ ĉ
solves Hamilton’s equations and h ◦ γ = 1.

Proof. In the first claim, gij
dci

dt
dck

dt = 1 follows from equation (A7), and
equation (A8) follows by differentiating dci

dt = Li ◦ γ. For the other
claim, let pi = L−1

i ◦ ĉ = gil ◦ c dcl

dt . Then γ = (c, p), and h ◦ γ = 1.
Equation (20) follows by expanding its right hand side, and equation
(21) follows since both sides expand to Γijk

dci

dt
dck

dt . �

APPENDIX B. COMPLEX TENSORS ON A CURVE

Let Ek(M,C) (k = 1, 2, . . .) be the space of complex k-tensors on
M . That is, an element in Ek(M,C) is a smooth mapping taking a
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point x ∈ M into a complex k-tensor in T ∗
x (M,C) ⊗ · · · ⊗ T ∗

x (M,C).
If c: I → M is a smooth curve on M , then by a smooth k-tensor
(k = 1, 2, . . .) on c we mean a smooth mapping α: I → Ek(M,C)
such that π ◦ α = c on I, where π is the canonical projection
π: Ek(M,C) → M . Then locally there are smooth functions αi1...ik
such that

α(t) = αi1...ik(t) dxi1 ⊗ · · · ⊗ dxik
∣∣∣
c(t)
,

where (xi) are local coordinates near c(t). A 0-tensor on c is just a
function I → C.

Suppose M is a Riemannian manifold and N i
j is defined as in

equation (13). Then the covariant derivative Dċ for tensors on a curve
c is the linear mapping that takes k-tensors on c into k-tensors on c
defined as follows. For a function f : I → C, Dċf = df

dt , and for a
1-tensor α = αidx

i on c,

Dċα =
(
dαi

dt
− αrN

r
i ◦ ĉ

)
dxi|c.

What is more, if α, β are smooth p- and q-tensors on c, then

Dċ(α⊗ β) = (Dċα) ⊗ β + α⊗ (Dċβ).

From the transformation properties of Γi
jk, it follows that Dċ is

well defined.
For example, if G(t) = Gij(t) dxi ⊗ dxj |c(t) is a 2-tensor, then

DċG =
(
dGij

dt
−GirN

r
j ◦ ĉ−N r

i ◦ ĉ Grj

)
dxi ⊗ dxj

∣∣∣
c
. (B1)

APPENDIX C. PROOF OF LEMMA 3.3

In the below proof we shall make heavy use of identities (A1)–(A6)
and the assumption h ◦ γ = 1. Let us also simplify the notation and
write γ when we mean γU . Let us also assume that in local coordinates
γ = (c, p). For Cij we then have

Cij =
∂

∂ξi

(
1
h
Lj

)
◦ γ

=
(
gij − yiyj

)
◦ ĉ,

and the first claim follows. By the definition Rij , we have

Rij =
(
∂Nm

i

∂xj
−
∂Γm

ij

∂xs
ys +N s

i Γm
sj −Nm

s Γs
ij

)
L−1

m .
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Since

Bj
i =

(
−N j

i − gjaΓb
aiL−1

b +Na
i L−1

a yj
)
◦ ĉ

it follows that

B̂j
i = −N j

i ◦ ĉ.

Next we expand each term in D̂. For Dij we obtain

Dij = − ∂

∂xj

(
1
h

Γm
niξmLn

)
◦ γ

= −
[(
Nn

i N
m
j L−1

n +
∂Nm

i

∂xj
−N s

j Γm
is − gnrΓs

inΓm
jrL−1

s

)
L−1

m

]
◦ ĉ.

Using that c is a geodesic yields

dΛij

dt
=

[(
∂Γm

ij

∂xs
ys +Nm

s Γs
ij

)
L−1

m

]
◦ ĉ,

and the last three terms in D̂ are

(B̂Λ + ΛB̂T )ij =
[
(−N s

i Γm
sj −N s

j Γm
is)L−1

m

]
◦ ĉ,

(ΛCΛ)ij =
[(
−Nn

i N
m
j L−1

n + gnrΓs
inΓm

jrL−1
s

)
L−1

m

]
◦ ĉ.

Substituting all these expressions into D̂ yields the result. �
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