Vol. 60
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-02-20
Exact Formulas for the Lateral Electromagnetic Pulses from a Horizontal Electric Dipole on the Boundary Between a Isotropic Medium and One-Dimensionally Anisotropic Medium
By
Progress In Electromagnetics Research, Vol. 60, 43-83, 2006
Abstract
In this paper, the exact formulas are derived for the timedomain electromagnetic field generated by a delta-function current in a horizontal electric dipole located on the planar boundary between a homogeneous isotropic medium and one-dimensionally anisotropic medium. Similar to the isotropic case, the amplitude of the tangential pulsed electric field along the boundary is 1/ρ2, which is characteristic of the surface-wave or lateral pulse. The tangential electric field consists of a delta-function pulse travelling in Region 2 (anisotropic medium), a oppositely directed delta-function travelling in Region 1 (isotropic medium), and a final static electric field due to the charges left on the dipole. It is seen that the pulsed electromagnetic field components consist of the first and second pulsed in the two regions with different velocities.
Citation
Kai Li, and Yi-Long Lu, "Exact Formulas for the Lateral Electromagnetic Pulses from a Horizontal Electric Dipole on the Boundary Between a Isotropic Medium and One-Dimensionally Anisotropic Medium," Progress In Electromagnetics Research, Vol. 60, 43-83, 2006.
doi:10.2528/PIER05110402
References

1. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 28, 665-736, 1909.

2. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 81, 1135-1153, 1926.

3. King, R. W. P., "New formulas for the electromagnetic field of a vertical electric dipole in a dielectric or conducting half-space near its horizontal interface," J. Appl. Phys., Vol. 56, 8476-8482, 1984.

4. Wu, T. T. and R. W. P. King, "Lateral waves: New formulas for E1φ and E1z," Radio Sci., Vol. 19, 532-538, 1984.

5. Wu, T. T. and R. W. P. King, "Lateral waves: A new formula and interference pattern," Radio Sci., Vol. 17, 521-531, 1982.

6. King, R. W. P. and T. T. Wu, "Lateral waves: New formulas for the magnetic field," J. Appl. Phys., Vol. 54, 507-514, 1983.
doi:10.1063/1.332102

7. King, R. W. P. and M. F. Brown, "Lateral electromagnetic waves along plane boundaries: A summarizing approach," Proc. IEEE, Vol. 72, 595-611, 1984.

8. King, R. W. P., "Electromagnetic surface waves: New formulas and applications," IEEE Trans. Antennas Propagat., Vol. AP-33, No. 11, 1985.

9. Pan, W. Y., "Surface-wave propagation along the boundary between sea water and one-dimensionally anisotropic rock," J. Appl. Phys., Vol. 58, 3963-3974, 1985.
doi:10.1063/1.335571

10. Margetis, D. and T. T. Wu, "Exactly calculable field components of electric dipoles in planar boundary," J. Math. Phys., Vol. 42, 713-745, 2001.
doi:10.1063/1.1330731

11. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves, The ory and Applications to Communications, 1992.

12. Van der Pol, B., "On discontinuous electromagnetic waves and occurrrnce of a surface wave," IRE Trans. Antennas and Propagat., Vol. AP-4, 288-293, 1956.
doi:10.1109/TAP.1956.1144389

13. Bremmer, H., Electromagnetic Waves, 39-64, R. E. Langer (ed.), 1962.

14. Haddad, H., D. C. ChangRadio Sci., and Vol. 16, 165, Vol. 16, 1981., 1981.

15. Wait, J. R., Wave propagation Theory, Pergamon, 1981.

16. Frankena, H. J., "Transient phenomena associated with Sommerfield’s horizontal dipole problem," Applied Scientific Research, Vol. 8, 357-368, 1960.

17. De Hoop, A. T. and H. J. Frankena, "Radiation of pulses generated by a vertical electric dipole above a plane, nonconducting earth," Applied Scientific Research, Vol. 8, 369-377, 1960.

18. Ezzeddine, A., J. A. Kong, and L. Tsang, "Time response of a vertical electric dipole over a two-layer medium by the double deformation technique," J. Appl. Phys., Vol. 53, No. 2, 813-822, 1981.
doi:10.1063/1.330586

19. Wu, T. T. and R. W. P. King, "Lateral electromagnetic pulsesgenerated by a vertical electric dipole on the boundary between two dielectrics," J. Appl. Phys., Vol. 62, 4543-4355, 1987.

20. Nikoskinen, K. I. and I. V. Lindell, "Time-domain analysis of Sommerfeld VMD problem based on the exact image theory," IEEE Trans. Antennas and Propagat., Vol. 38, No. 2, 241-250, 1990.
doi:10.1109/8.45127

21. Nikoskinen, K. I., "Time-domain analysis of horizontal dipoles in front of planar dielectric interface," IEEE Trans. Antennas and Propagat., Vol. 38, No. 12, 1995-1957, 1990.
doi:10.1109/8.60984

22. Dai, R. and C. T. Young, "Transient fields of a horizontal electric dipole on multilayered dielectric medium," IEEE Trans. Antennas and Propagat., Vol. 45, No. 6, 1023-1031, 1997.
doi:10.1109/8.585751

23. Cicchetti, R., "Transient analysis of radiated field from electric dipoles and microstrip lines," IEEE Trans. Antennas and Propagat., Vol. 39, No. 7, 910-918, 1991.
doi:10.1109/8.86909

24. Ezzeddine, A., J. A. Kong, and L. Tsang, "Transient fields of a vertical electric dipole over a two-layer nondispersive dielectric," J. Appl. Phys., Vol. 53, No. 3, 1202-1208, 1981.
doi:10.1063/1.329738

25. Xia, M. Y., C. H. Chan, Y. Xu, and W. C. Chew, "Time-domain Green’s functions for microstrip structures using the Cagniard-de Hoop method," IEEE Trans. Antennas and Propagat., Vol. 52, No. 6, 1578-1585, 2004.
doi:10.1109/TAP.2004.830258

26. Li, K., Y. Li, and W. Y. Pan, "Exact formulas for the lateral electromagnetic pulses generated by a horizontal electric dipole in the interface of two dielectrics," Progress In Electromagnetics Research, 249-283, 2005.

27. King, R. W. P., "Lateral electromagnetic pulses generated by a vertical electric dipole on a plane boundary between dielectrics," J. Electromagn. Waves Appl., Vol. 2, 225-243, 1988.

28. King, R. W. P., "Lateral electromagnetic pulses generated on a plane boundary between dielectrics by vertical and horizontal dipole source with Gaussian pluse excitation," J. Electromagn. Waves Appl., Vol. 2, 589-597, 1989.

29. Li, K., Y. Lu, and M. LiY. Lu, and M. Li, ``Approximate formulas for lateral electromagnetic pulses from a horizontal electric dipole on the surface of one-dimensionally anisotropic medium, "IEEE Trans. Antennas and Propagat.,", Vol. 53, No. 3, 933-937, 2005.

30. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, 1980.