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Abstract—In this paper, the exact formulas are derived for the time-
domain electromagnetic field generated by a delta-function current in
a horizontal electric dipole located on the planar boundary between
a homogeneous isotropic medium and one-dimensionally anisotropic
medium. Similar to the isotropic case, the amplitude of the tangential
pulsed electric field along the boundary is 1/p?, which is characteristic
of the surface-wave or lateral pulse. The tangential electric field
consists of a delta-function pulse travelling in Region 2 (anisotropic
medium), a oppositely directed delta-function travelling in Region 1
(isotropic medium), and a final static electric field due to the charges
left on the dipole. It is seen that the pulsed electromagnetic field
components consist of the first and second pulsed in the two regions
with different velocities.

1. INTRODUCTION

The frequency-domain electromagnetic (EM) fields from horizontal
and vertical electric dipoles located on or near the planar interface
between two electrically different media like earth and air or sea water
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and rock have many useful applications in subsurface and closed-to-
the-surface communication, radar, and geophysical prospecting and
diagnostics [1-11]. A historical account and extensive list of references
have been summarized in the monograph by King, Owens and Wu [11].
Also of interests are the properties and possible applications of the
transient EM field due to a dipole source on or near the boundary
between two dielectrics. Almost half century ago, Van der Pol [12]
first formulated the transient EM field of a vertical electric dipole with
a delta-function excitation on the boundary between two half-spaces
by invoking the Hertz potential. Lately, the same problem was visited
by many investigators [13—-29].

In [27, 28], the approximate formulas have been obtained for
lateral EM pulses from vertical and horizontal electric dipoles with
delta excitation and Gaussian pulse excitation near or on the boundary
between two dielectrics. Recently, the approximate formulas are
derived for lateral EM pulses from a horizontal electric dipole on the
surface of one-dimensionally anisotropic medium [29]. It is well known
that it is very difficult to present the ezact solution of the EM field from
a dipole source near or on the boundary. Fortunately, the important
progress on this problem has been made by Wu and King [19], and
the ezxact formulas were derived in detail for the components F, and
By of the transient EM field generated by a delta-function current
in a vertical electric dipole on the boundary between two dielectrics.
Similar to the case of the vertical dipole [19], the ezact formulas have
been obtained for the transient EM field generated by a horizontal
dipole with delta-function excitation on the boundary between two
dielectrics [26].

When a horizontal dipole is located on the planar boundary
between a homogeneous isotropic medium and one-dimensionally
anisotropic medium, the problem of the exact solution on the transient
EM field will be in general more complicated. The relevant geometry
and Cartesian coordinate system are illustrated in Fig. 1, where a unit
horizontal electric dipole in the & direction is located at (0,0, —d).
The half-space z < 0 (Region 1) is filled with a homogeneous isotropic
medium, and the rest space z > 0 (Region 2) is with a medium
characterized by a permittivity tensor of the form

T 0 0
€9 = € 0 er O . (1)
0 0 €L

It is assumed that both Regions 1 and 2 are nonmagnetic so that
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dipole at (0,0, -d)

Figure 1. Geometry of a Z-directed horizontal electric dipole on
the boundary between one homogeneous isotropic medium and a one-
dimensionally anisotropic medium.

11 = o = po. The wave numbers of the two regions are

WA/E

k1 = wy/pocoer = - 17 (2)
WA /E

kr = wy/pogoer = CT, (3)
W\/E

kp = wVpososL = — L (4)

In this paper, it is assumed that the dipole source and the
observation point approach the boundary between a homogeneous
isotropic medium and a anisotropic medium from below (d — 0T)
and from above (2 — 01), respectively. The ezact formulas in terms
of elementary functions will be obtained for the three time-dependent
components F,, Ey, and B, of the transient EM field due to a delta-
function current in a horizontal electric dipole.

2. FORMAL REPRESENTATIONS OF
TIME-INDEPENDENT FIELD DUE TO A UNIT
HORIZONTAL ELECTRIC DIPOLE ON THE
BOUNDARY BETWEEN A ISOTROPIC MEDIUM AND
ONE-DIMENSIONALLY ANISOTROPIC MEDIUM

From the available results addressed in [9, 11], with the time
dependence of e~ the Fourier-Bessel representations for the EM field
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in the cylindrical coordinates (p, ¢, z) with = pcos¢ and y = psin¢
(0 < ¢ < 2m) can be simplified greatly. They are
Esp(p, d5w) = Enplp, ¢3)
o s TR
k‘Tk‘L\/ﬂ + k%m

[Jo()\P) — Ja(Ap)]

1
+\//<;%—A2+\/k§—v[

Jo(Ap) + Jz(Ap)]} cos @, (5)

EZd)(p: (bvw) = El(i)(pa ¢,UJ)
w,uo/d)\ )\{ \/’7‘5%_)‘2\/]‘%_)‘2
krkpJk2 — N2+ k2, [k2 — X2

[Jo()\P) + JQ(AP)]

\/kQ A2+ \/k2 A2

~ k?
E22(27¢;w) = k‘2 Elz(pv¢a )

- 2
Amk, krkp/k? — A2 4+ k3 /K3 — A2

x J1(Ap) cos ¢, (7)

[Jo(Ap) — Jz(Ap)]}Sinqb, (6)

BQP(pa (bvw) = Elﬂ(pa ¢,UJ)
_m 7’dA A{k:Tk:L,/k% — A2 — k22— N2
8m ) krkpaJk2 — A2+ k2 k2 — A2

x[Jo(Ap) + J2(Ap)]
\/k:2 — A2 = \/k‘2 A2 J
\/k2 L )\2 o

p) — J2(>\P)]}Sin¢>7 (8)
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Bag(p, ¢;w) = Big(p, ¢;w)
_m 7’dA A{szk:L,/k% N R Nt
8 krkpaJk2 — A2+ k2 k2 — A2

<[ Jo(Ap) — J2(Ap)]

k2 — 22 — k2 A2
\/ \/ [Jo(Ap) + Jz()\/?)]} cos @, (9)

\/k2 — X2+ K] - X2

§22(2,¢;W) = élz(pv ®; )

_ipo /d)\ \2 1 Ji(Ap)sing, (10)
— A2+ \/k‘% -2

where Jy, Ji, and Jo are the Bessel functions of orders 0, 1, and 2,
respectively.

It is convenient to express the components of the EM field in terms
of w instead of wave numbers. With k; = w611/2/c, kr = wsTl/z/c,
kp = wep'/?/e, N = ¢\, and p' = p/ec, where ¢ = (o)~ /? is the
velocity of light, and taking into account the following relations,

Ro)+ 1) = T Ii(). (11)
JoAp) — Ba(Ap) = 2J0<Ap>—pr1<Ap>, (12)

we can write the Fourier-Bessel representations for the six components
of the EM field in explicit forms.

Bop(p,0;w) = Eq,(p, 05w)
o0

B wuo/d)\ N Vw2e] = N2\ w2er, — \?
27rc0 w2,/5T5L\/w251—)\’2—|—w251\/w25L—)\’2

<[ To¥) = )

! L m}, (13)

+
Vw2er — N2 + Vw?2ey — N2 N/ 1
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E2¢(p/7 7T/27 w) = Elqﬁ(p/v 77/27 w)

o0

_ %/d)\’)\’ \/w251 _ A’Q\/w%L —\2
27c / w2\ [ererVwie] — N2 +w2eV/wie — N2

1
\/w2€T —\2 + \/w2€1 —\2

1
X)\/—p/JI(A/p/) +

x{muwv—AaﬂﬂXdﬂ}, (1)

- or -
Eo(p\0;w) = —~En.(p',0;0)
€L
’L',LLO 7dA/A/2 w2 V 8T€Lm*w2€1\/m
drwere w2\ /erepvw?e; — N2 +w2e1Vw2er, — N2

0
xJ1(Np'), (15)

Boy(pm/2;w) = Bio(p',7/2;w)
o 7d)\’)\' w2 Jerervwe; — N2 —w?e1vwer — N2
N 47r020 w2\ /erepVwier — N2 +we1Vwiep — N?

VwZep — M2 — Jw2e; — N2
VwZer — N2 + Vw?ep — N2

1
X A/—p,JI(/\,p,) +

XMWM—$Ame, (16)

§2¢(Pla 0;w) = Ew(ﬂla 0;w)
o0

Mo /d)\/)\/{w2\/€T€L\/m—w2€1\/m

47?620 w2\ [erepVw?er — N2 4+w?eVw?ep, — N2
1
<[ ToX) = 5 n )

(17)

\/w2€T — N2 — \/w2€1 —\2 LJ ()\/ /)
Valer — N2+ Jwle — NENp TP

Bo.(p), 1/2;w) = B (o), 7/2;w)

o 1

0 I\12 I
= dN' X J1(N'p). (18
27rc20/ Vw2er = N2 4/w2e; — N2 1(NP)-(18)
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3. TIME-DEPENDENT COMPONENT FE;, DUE TO A
HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

3.1. The Integrated Formula for Time-dependent
Component F»,

If the exciting current in a horizontal electric dipole is a delta-function
current with a unit amplitude, we can write the time-dependent
component Fy, by using the Fourier transform.

o
1 o
Es(p',0;t) = ;Re/dw e ! Ey,(p', 0y w). (19)

Substituting (13) into (19), we find

Es,(p',0;t) /d Tty

«Re / AN N A e L
w2 Jerervwie; — N? + wleivwier, — N?

<) = 5 BN

Np (20)

1 1
+ —J !/ )
Vw2er — N2 4 Vw2er — N2 N p/ i )}

With the definition M = w¢, d\ = wd€, (20) changes as

Ver—&Vep — €
Palp0:0) = e | ’Sdf{\rmmmm

X [%O/dwei”tjo(wﬁp)+ g—p,a—/dwe Wt (wep! )}

1
Vel -8+ er - &2 £p’ ot

/dwe W (wép )} (21)
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The integrals in (21) with respect to w can be obtained by using the
infinite integral formula 6.611-1 of [30]. When ¢ > &p/,

/dwe_mefo(%ﬁ/) - (22)
2 _¢2,2
s Ve = &%p
7dwe_i“’t<] (wep') = 1 1- __t (23)
; ST el
Then, (21) can be rewritten as
A
Epp(p,05t) = e Iy + Iz + I3]. (24)
where
2 i — 2 — 2 1
I = iz Im / £de ver—&ver —¢ , (25)
otz ) T ErenVe — & Heier — € VB pP = &

\/61—§2\/8L—§2 1
VETELVEL — E2 +e1y/ep — E2 &%

X [1 - ﬁ}, (26)

I 4 I 7fd§ 1 1 1 !
= — 1In - .
3 ot / \/51 _ 52 + \/5T _ 52 §2pl /12 — £2p’2

Next, the main tasks are to evaluate the above three integrals.

(27)

3.2. Evaluation of I;

Following the similar manner used for the evaluation of Fs.(p,t) due
to the vertical dipole in [11, 19], I; can be evaluated readily. With the
branch-cut structure in Fig. 2, it follows that

I =0, t/p/<\/€L. (28)
The contour of integration is shown in Fig. 3, we can then obtain
VEL
h=2 m /L)Ed&[ ver— e, &
B (VErerVer — & +e1ver — €)1 /p? — €2

0
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_ Vel — e — &2 ]
(VEreLyer = & +erver, — @) (- /p? = &)
+ 7 &K{ iver — EVE ey
VT (VererVer — §2 +ie1 /€2 —ep)\/12/p% — €2
_ iver — V& —ey ”
(\/ETEL\/€1 — £2 4 4eq /€2 —gL)(_\/W) ’

VeL <t/p < yEr. (29)
& - plane
t/p
7o\
0
R

t<p! £ —plane
0 t/p'

& &
0 < >
L
p e <t l l p
0 ¢ Ry X)
e

Figure 3. Contours of integration for the integrals in (25)—(26).
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Because the integrand of the first integral in (29) is real, there is no
contribution to the imaginary part. So that

t/p'

0 i2v/e1 — 2V —¢;
"1:—2111[1/5d5 - 2 272 2
ot o (Vererver — & +ie1V/€2 — e )V /p? — €
€L
(30)
The real and imaginary parts can be separated readily and the result
reduces to

t/p
I — (9_2 / €de 2w/5T5L(51_§2)\/§2_5L
Lo i [(e2 —erer)E? —e1en(er —en)] /2 /p? — &2
L
t/p'
62 3 52 — €7
= o ereri— | ¢34
o ﬁf @i V7€
L
t/p
82 52 — &
2e1+/ — d .
TEErL g ﬁg @i - VTP
&)
(31)
With the change of the variable ¢ = &2, d( = 2¢£d€, it becomes
52 £2/p? —
L = —\/erer— d vo> ok
! €T€L8t2 5[ < C[(EQ — 5T5L)C — 515L(51 — 8T)]\/t2/p/2 — C
/( — €L
v — d .
teverer ot? 8[ C[(€2 —erep)C —eiep(er—er)|V/t?/p?—C
(32)
It is found that the two integrals in (32) need to be evaluated.
t2/p/2
o = / CdC— Ve~ <L . (33)
2 [(e1 —erer)( —eren(er —en) V2 /p* = ¢
t2/p’2
9 = / dc Ve —eL C(34)
(e —erer)C —erer(er —er)|VE2/p? — ¢

€L
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The above two integrals are evaluated in Appendix A. The results are

s { 12 251€L(€1_5T)_251w/5T€L5L(51_5T)

= ——— < ——¢1.
2 2 2
2(e2—erpeyr) | p? ef—erer e{—erer

" [E% — &?TaLﬁ B eier(er —er) —1/2 (35)
g1 —er p? €1 — €L ’
—1/2}

(36)

—eTEL t slsL(sl —er)
—€L P €1—€L

(e —erer)

7T
o = 27{ ~VErer |

Substituting (35) and (36) into (32), the result becomes

I = YT G_Q{ﬁ_ _2d(ei—e1) | 2 VETEL(er—<n)

€L
2(e2—erer) 012 | p? g2 —erey, e2—erey,
2 2 -
" [51 —eper t _ElEL(e’:‘l—ET)

e1—er p? £1—¢€L

1/2 +
}, \/5<;<\/5. (37)

When t/p" > /g1, with the contour in Fig. 3, we obtain

I = o Im{ / cde 2v/e1 — E4/E — €,

(VETELVE1 — & +ie1 V&% — L)\ /]2 — €

/o'

i20/€2 — 1/ — ¢,
+\/Z_1 gdg(m\/g—51+81\/§2—5L)\/t2/p’2— } (38)

The imaginary part is written as follow:

I =

{ /€ f 2w/5T5L(€1_ 2)\/52—€L
—erer)é? —e1er(e1 —er) |2/ p* — €2

et e
[(5% —erer)E? —ere(er —er) V27 — €2

% { t//‘"g " 2 ETEL (e — €)VE = 2p
[(e2 — eper)€? — e1eL(e1 — er) |12 /p% — €2

€L
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2e1(8% —ep) V& — e } (39)

d
e ¢ 5[(5% —eren)é? —eren(er —er) V12 p? — &2

t/p
_|._

With the change of variable ¢ = £2, we write

I = 8_2 { 7‘) dc Verer(er — OV —er
1 ot2 J [(e2 —erer)¢ —e1er(er —er) V2 p? =
n t//p dc a1 —er)vC—el
p [(e3 —erer)C —e1en(er —er)] /12 /P2 —
= — 5T€La_2 t2//p/2CdC Ve~ e
otz ) 7 [(ef—eren)(—arer(er—en) VP /% =C
t2/p/2
el Vi=eL
+ée1 ETELW 5[ dC[(Ef—aTEL)C—?ElEL(El—gT)} /tQ/p’Q—C
2 Ve
—1—51@ 5[ CdC[(g% —erer)C —eiep(er —er)|VEE/p? — ¢
9 t2/p/2 C - 81
_515L@ / d¢ [(5% T erel)C —erer(er — é_T)]\/WTC.

€1

(40)

The evaluations of the first and second integrals in (40) are shown
in (35) and (36). Next, the third and fourth integrals need to be
evaluated. They are

t2/p/2

9 — d VE—e1 il

: ! ‘ C[(E% —erer)( —e1ep(er —er) V2 p% = (41)
t2/p

92 — d N1 s

e / C[(a% — ETEL)C — 515L(51 _ €T)]\/t2/p’72—ﬁ ( )

€1
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The above two integrals are evaluated in Appendix B. The results are

g — 7 o . 2e1ep(e1 —er)  2efep(er —er)
€ 2(e2 —erer) | P2 €2 —erey, €2 —erey,
2 _ 2 _ ~1/2
" [51 erep t° eieg(er —er) 7 (43)
g1 —er p? €1 — €L
9 — Tl [5%_%“ 2 acna—en)) (44)
: (e3 — erer) e1—er p? €1—€L ‘
With substitutions (35), (36), (43), and (44) into (40), it follows
5 = T 872 ﬁi6%—\/€T€L€L+2€1\/€T6L(61—€L)
! 2(51‘1‘\/5T5L) 3t2 pl2 E1—\/ETEL 6%—€T6L ’

§ > VAL (45)

Combined with (28), (37), and (45), I1 can be re-written as follows:

T 02 t
L = —— — . 46
1 2 O12 fl(p,) ( )
where
t
O, ; < VEL
_ \JFErer {ﬁ—g _25%(51—@)+26%,/5T€L(51—5L)
g2 —erer, | p? L €2 —erey, e2—ereyr
—1/2
t e2—erep t2 erep(er —er) t
1l5)]= x| ——— , VEL < — < /€1 -
f (Pl) [ E1—€L ,O/2 €1 — €L } L o \/—1
1 [ﬁ_a?—w/aTsLaL_1_251\/5T5L(51—8L)}
E1F+F\ETEL p'2 E1—+\/E€TEL 6%—€T€L ’
t
g Ve

(47)
It follows that fi(\/er—) = fi(ver+) = 0 and fi(\/e1—) =
H(VE+) = 7&4?(\/;1—5_5%) It is seen that fi(¢/p’) is everywhere

continuous.
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t
0, ;<\/€L
ETE 2t e2 —eper, 12
_2\/TL/2{1_5§@ cL-eren b
f’( t ) El —E€TEL P E1—€L P
i\ = —3/2 :
€1er(e1—e t
p X_M] } <t <va
€1—EL p
1 2t t
S — >/
€1+ erer p? 4 Vel
(48)

Since fi(veL—) = 0, fi(ver+) = 2/[ery], there is a step
discontinuity of 2/[\/erp’] in fi(t/p) at t/p) = /er. Similarly,
filyei-) = =2y/erer/[yEi(er + erern)p'], filvet) = 2y/E1/[(e1 +
Verern)p'], f1(t/p') has a step discontinuity of 2/(,/e1p") at t/p’ = \/e71.

Then,

t
0, ; < \/EL
2 /2
_ 2y/Ereg {1+61\/6T6L(61 er)

(ef—erer)p” (ef—ereP/?
» [2152 €1€L(€1 — ET) 12 B €1€L(€1 — €T)

2 2 2 2

//(;> - —5/2}
1 y ] T »

P &1 —E€TEL P &1 —E€TEL
t
\/€L<;<\/€_1
2 t
9 — > el
(e1 + vETer)p” o’ Ve
(49)

Obviously, the exact formula for I; is obtained readily.

1 1 VETELC?
Ilzc_”—CS(t—\/Ep)Jr 5<t—‘/ap> T A
VET c VEL c (ef —erer)p
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0, ; < \EL
_(1 N e2\/erer(e1 — EL)3/2 {20%2 n eier(er —er)

2
(€2 — erer)3/? P> e2 —erey

X 2,2 —5/2
c“t eier(er —er) ct
X — VEL < — < 4 /€1
[ p? 8% —ETEL ’ P
! (e1 — erer) ct > /e
1 — VETEL — 1
\VETEL ’ p

(50)

3.3. Evaluation of I

With the similar procedures addressed in Subsection 3.2, I can be
evaluated readily.

I, =0, t/p < \/EL. (51)
When (/e <t/p < /e,
L0 [ ] ede | ive —&VE <
ot / &p | \Jfereper — € +ie1 /& —¢p,

_i i\/El _€2\/§2_5L :|} (52)
7 (Vereiver — €+ ier/& —en) (VBT - ) |

The imaginary part is re-written as

I, =

p ot 2 (€2 —erer)E? —e1ep(e1 —e7)

I, = 19 {7§d£ VETEL(e1 — E)VE — ¢,
0

o0

_ié/% VEreL(er — E)VE€ —eL, } 5
§2 [(e2 — erer)€2—cerer(e1—er) |2 /P2 —E2 |

ot
oty

With the contour in Fig. 3, we get

_290 {i t/p’% VeErer(e1 — )/ — ¢y }
C oo p/\/a_ & [(e1 —erer)e? —erep(er —en)|VE/P? =2 |

(54)
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With ¢ = €2, this becomes

L lg {t t2/p’2ic eren(er — OV —er }
2T pat o S Cled —erer) —eren(er —en)VE/p? = C
_ w—g{zjﬁ Ve }
pl oty & ¢ [(ef—erer)¢—eren(er—er)]V/t?/p*—C
VD {f//”dc Ve }
pooot | 2 [(e3—erer)(—erepler—er) V2 /p?—C |

(55)

The first integral in (55) need to be evaluated and the second one has
been evaluated in (36).

t2/p/2
93 — g Ve —eL (56)
0 S Clet —erer)( —eren(er —en)|[VE/p” —C
The integral 063) is evaluated in Appendix C, and the result is
£2\ —1/2
0 = il
0 eiep(er —er) L p'?
2 t? _ 71/2
_ e {51 ETET L. e1er(e1 z-:T)] 67
g1 —€L p €1 — €L

Substituting (36) and (57) into (55), we write

I ETELT O {t [ 1 1 (t2 >1/2
2 = Ay -
e

p/ ot ; %—ET&“L + w/5L(51 —ET) 02

p
+@( 1 1 )

e2 —eper  er(er —er)

2 2 —1/2
t — t

X (61 ETEL 518[/(51 5T)> ]}7 1< - < \/E
p

e1—er p? €1 — €L
(58)
When t/p’ > /€1, with the contour in Fig. 3, I is expressed as follows:

I, =

_9 Im{ ffdﬁ iVer =82/ — ¢y
ot &0 \ferepyer — € +ie1/E — ey

0
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o
ot / §d¢ iver— V&2 —¢p
0| @ (ereve - @ i e V€

+/ §dg IVE —e1V/E2 — ¢
§20' \Jereryer — & +ie1V/E — ¢,

! 7’ et V& —eV/E e (59)
oL ' (VETerye1—E4ie1/E —ep) /12 [P — &2

The imaginary part reduces to

&2 (3 —erer)é? —e1ep(e1 —en)

n=-12 { [ e VErELe — Ve
ot

L[5 JErer(e — )V o,
0 §2 [(e? — erer)€? —erep(er —er)] /12 /p2 — €2

7%81 —ep)VE —e1 — ferern(er — E2)VE — ¢,
§
VeI

(€2 —epep)E? —erep(er — E:r)

& (1 —erer)€? —erernler —er)|VE2/p? = €2
7% VereL(er — &)VE —eL
) &

§dg

€1

i]o&dfs —e)VE —e1 — erep(e - )V§2_5L}
ya

Q)‘Qj

-

t % — 6T€L)§2 — 515L(51 — ET)

b‘)ﬁ

VETEL(e1 = E)VE — e
€ [(ef —erer)€? —erep(er —er)|VE?/p? = €2

i 7@ e1(¢? —eL)VE — e
e

t
v

§2 (e2 —erer)&? —erer(er —er)
€

_t 7@5 £1(6 — e1)VE — 2 0)
P'\/g € [((e3 — erer)&? —erepler —en) |V /p? =2
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In terms of the variable ¢ = £2, d( = 2¢d¢, this becomes

IF_mg{ffdc Vi }
o ot | [((e1—erer)C—eren(e1—er)]V/i2/p?—(

€L

_aWﬁiﬁ{f@% Ve }
i o\ <G ereni e VTG
a0 {itsz;g e }
oot | p J (61 —erer)C—eren(e1—er) V2 /p? =
t2/p/2

e1er, O | ¢ d¢ VE—¢1

) E{?! < [((5%—5T5L)C_515L(51—5T)]\/752//)T_<}.
(61)

The evaluations of the first, second, and third integrals in (61) have

been found in (36), (57), and (44), respectively. Next, the fourth
integral will be evaluated. It is

d vi—er (62)
¢ [((e3 —erer) —eren(er —en)VEE/p? = C

t2/p/2
9B =

€1

The integral 19&3) is evaluated in Appendix D, and the result is

K1) \/E(ﬁ>_1/2—5 (5%—€T€L t? €1€L(€1—€T)>‘1/2
€ e1er(e1—er) 02 e1—er p? e1—€r, '
(63)
Thus,
A o _<¢a__w§)<ﬂ>m}
2T Pt \ple+vErer \er—er e —er ) \p? ’
t
J > /e (64)

Combined with (51), (58), and (64), the following expressions for Io

can be obtained readily.
T 0 t
= n(5), (65)
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where
t
07 ; < \/EL
t { VETEL n ETEL <t2 )1/2
Pl el —erer  eL(er —er) \p?
ETEL ETEL
+( i _ )
s < t ) g1 —erer,  er(er —er)
2\ )~ 2 2 ~1/2
0 el —erep t €1€L(€1—€T)) t
> T — s < =<
( €1—€r, p/2 €1—€g, €L p/ \/a
laves 22008
p'ler + \ETer e1—er  e1—er/)\p? ’
t
7 > \/e1.
(66)
Since fo(vEL—) = f(Vert) = 0, fu(yai-) = f(Va+t) =
VETEL | _ 1 VEi—+ET o . ;o
Ve atvere T \/EL(EIET)], it is continuous at t/p’ = |/er and

t/p' = Ver

0, §<\/5
/<t> %@)p’[_prg%@ »
(L) = B -
) (ot ) ) ke
plewm §>*/€_1'

(67)
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& —plane

t/p'

A4 "
I, Jer

Figure 4. Branch-cut structure for the integral in (27).

Then, the exact formula for I is expressed as follows:

t
0, % < +erL
(61 _ EL)3/2
(e3 —erer)®/?

\/ETEL 2
2 2_|:—].+51\/5T€L
c°T €7 ETEL

L="
p e2 —epep, t? 515L(51—5T))_3/2} ct
X —— , VEL < — <./
( g1 —er p? €1—€L >0 '
1 ct
_— — > \/€1
€1+ \/ETEL P
(68)

3.4. Evaluation of I3

Following the same procedures in evaluations of I addressed in
Subsection 3.3, I3 can also be evaluated readily. When ¢/p’ < \/er,

I;=0. (69)
When /er < t/p' < ./e1,
9 T ede 1
Iy = =1
3 ot m{o §2P,[\/€1—f2+i\/§2—5T

t 1
pl(\/El_624-7:\/52—ET)(\/tQ/pQ_gz)}}‘ (70)
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t<p' ¢ —plane
0 yp!
J&r Ve
per<t<pie t/p'
‘ Ve Ve
P\/?1<t [ t/pl
0 \&/ \&/ X
‘ s e

Figure 5. Contours of integration for the integral in (27).

The real and imaginary parts are separated readily and only the
imaginary part is retained. Then, the result reduces to

P N Yemy | e
0

(61 — €T)p/a 52 p/ / §2 /t2/p/2 _ 52
(71)
With the contour in Fig. 5, we have
t/p
. — 2 9t %—M (72)
ST (e—ep)p ot |y £2 2?2 -2 |
VET
With the change of variable ¢ = €2, d¢ = 2£d€, this becomes
t2/ /2
RIS SN E R S S )
T (er—en)p ot | o S VPP
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The integral in (73) can be evaluated easily.

t2/p/2

9@ _ / ¢ ve—1
o= ] TV
_ 7/2 dC . 7’)’2 ¢
VB2 = —er)  J VB 0? = -er)
2\ —1/2
_ ﬂll - @(%) 1 . (74)

Substituting (74) into (73), we get

T 0

Ii=— " 2
3 (e1 —ep)p’ Ot

2\ ~1/2 ct
[1—\/57(p,2> ] VAT <5 < VR (1)

When t/p’ > /1, with the contour in Fig. 5, we write

9 ' gde 1
13 = ot Im{

£ o1 =2 +i/E2 —er
\/a

t 1
i 0/ 0% (Ver — &€ +i/E —er) 12/ p? —

/ £d¢
o 52 2 l\/§2 *81+Z\/§2 —E&T

ot / sd 1 (76)
20 (V1 + B e E[ €[

The contributing imaginary part is

- 1 cde Tede V@—er
@—TZIFWm{ Ve e e
d d 2 _
/ < g\/éi i—f—ﬁgiw f1§2}. (77)
NG NG
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In terms of the variable ¢ = €2, the result becomes

A t//dc Ve,
P (e1—er)p?ot | o VB =C

2

o a v )
Eu=enptor Lo g CVEE =)

The evaluation of the first integral in (78) is found in (74). Next, the
second integral will be evaluated.

2/ /2
9@ _ t /p g _ve—e1
8 ¢ VP
2/ /2 2/ /2
) t/p dc . t/p i
J VEE o ) ot
2N\ -1/2
- Wl1_\/a(ﬁ> ] (79)
With substitution (74) and (79) into (78), we obtain
™ o\t N
[3 a (61 — é‘T)p/a [;(\/a_ \/ﬁ)(ﬁ) ‘|7 ; ~ \/a (80)
Combined with (69), (75), and (80), we write
s 0 t
5= e #) )
where
0, C;f < Ver
t t 2\ "1/2 ct
#(3) =7 [1—@(ﬁ>2 L/Q vers sy
t“ N\ ct
(@—@)(W) ) ;> €1
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Obviously, f3(ver—) = fs(yer+) =
VEI — /€T, it is continuous at t/p’ =1 and t/p’ = \/e1.

t
0o , e < W\ET
P
t 1 ct
é</> = —~ 5 VeEr < — <yEr . (83)
P p p
ct
0o , — > V€1

Finally, the exact formula for I3 is obtained readily.

t
0 i <+er
Ar P ct
I3=——— 1, er < —</e1 . 84
5T (o1 —en)p? o p (84)
0 y ; > VE1

3.5. Evaluation of Ey,(p,0;t)

Combined with (24), (50), (68), and (84), the exact formula for
the electric field component Es,(p,0;t) can be expressed in terms of
elementary functions.

1 1 w/st) 1 < \/81/3) 1
E 1) = - _
20, 031) 2mwegcp? l,/ET(S(t c + w/sld t c +27raop3

0, — < VErL
p
_ 2\/Ereg e2erer(eq —ep)3/? [CQt2 n 2e1er(e1 — ET)]

e2 —eper, (% —eper)b/? p? €2 —erey,
_5/2
[CQtQ e1ep(e1 — 5T)1
: - )

2
P> ef —erer

t
Ve < % < \/ET

x 1 2\/erer e%erer(er —EL)3/2 2t? n 2e1ep(e1—erp) |
e1—er e2—eper,  (e3—erer)d/? P> e2—epeg,
At? eiep(er —er) o VT < ct <A
— Er — €1
p? 8% —ETEL ’ P
2 ct
— — > /e
€1+ Erer’ P ver

(85)



Progress In Electromagnetics Research, PIER 60, 2006 67

From (85), it is seen that the amplitude of the pulsed field along
the boundary is 1/p?, which is characteristic of the surface-wave or
lateral pulse. In particular, it is found that the first pulse arrives at
t = \/eLp/c has travelled along the boundary in Region 2 (anisotropic
medium) with the velocity c¢/\/e; and the second pulse arrives at
t = /e1p/c has travelled along the boundary in Region 1 with the

velocity ¢/ /e7.

4. TIME-DEPENDENT COMPONENT FE,;, DUE TO A
HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

4.1. The Integration for Time-dependent Component FEs;

Similar to the time-dependent component Ep, addressed in Section 3,
the time-dependent component Es, due to a horizontal dipole with a
delta-function excitation can be written as follows:

o0

1 .
Eoy(p',m/2;t) = ;Re/ethE2¢(p’,7r/2;w)dw. (86)
0

With substitution (14) into (86), we write

o
Eoy(p' m/2;t) = % /dwe‘i‘”tw
0

><Re7od)\’/\’ Vwler - ATVl — A Lo
/ w2\ [erepvVwier — N2 + w2evVwier, — N2 N/ 1nAp
1

+\/w2€1 — N2 4 Vw?ep — N2 [JO(XP/) Np ’Jl(X ,)] } 57

With the definition N = w, d\' = wdg, (87) reads as

Vel — e, — &2 i
Eaolpl,m/2:1) R /ﬁdﬁ{ VETELVE — € +erver — €260

1
Vel =&+ er — &

X Ot /dwe_i“’tJl(wfp') -

[%g jdwe‘imh(wfpl) 92 /dwe MtJO(ng )}} (88)
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Taking into account the relationships in (22) and (23), (88) can be
rewritten as follows:

Baolpl,m/20) = 550 [+ T+ 1), (89)

where I and I3 are expressed in (26) and (27), and I4 is expressed as
follows:

2 7 1 1
"t Imo/édgm =€+ Ve - VP8

(90)

It is seen that the evaluations for Iy and I3 have been found in (68)
and (84), respectively. In the next step, we will evaluate 1.

4.2. Evaluation of I

Following the similar procedures in the evaluations of I and I3, the
evaluation of Iy can be carried out readily. When t/p" < \/e7,

Iy =0. (91)
When /27 < t/p’ < /€1, with the contour in Fig. 5, we have

0? v 1
b e Im{ D/ §d§[<¢a—»szweT—fZ)w?/pf?—f?
1
(Ve =€+ Ver - @) (VPP - £2>]

t/p'
1

+¢e[ 5df[(\/el — & +iVE —er) /12 p? - &

1
Ve ) } %)

Because the integrand of the first integral is real, the contributing
imaginary part is

t/p'
2

32
o Im¢e/7 R N NI

(93)
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The imaginary part becomes,

I — 2 / ¢d gg (94)
YT T 8752 2% — g2
With ¢ = €2, it follows
2/p/2
I = 1 / <7V—5T (95)
1T 51—€Tat2 \/t2/p/2 )

Let T = t?/p"? — er, and 2/ = ( — er, the integral in (95) can be
evaluated as follows:

t2/p/2
?9(4) _ / dc—Yo T V¢
0 /t2/p/2 /
12
Thus,

7r 0% [ t? t

I = ——— | — — vV - < Vel

1T (e —ep) 02 <P’2 5T>’ = 4 sve 67)

When t/p’ > /g1, with the contour in Fig. 5, we have

I = —8—21m{ / de 2
Yoo LT Ve @ i E e VR €

(98)

o
2
+ [ e 4 .
Jar (iVE — 1 +iV/E2 —er) V12 /p? = €2
G
The contributing imaginary part is

L2 v f W—W
YT —epon? { /§§ 2] g2 — 524'/5 dg 2] 2 — }

t/p

2 e [e1 — &2
Zsl_watz{/“ NG /“m} )
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In terms of the variable ¢ = €2, it follows

9 t2/pl2 t2/p/2
I, = 1 / dcim_ / de—Y=t > Ver—¢ (100)
A W AN T e RN |
T 1
The first integral in (100) has been evaluated in (96), and the second
one in (100) need to be evaluated. Let T, = t2/p? —¢1 and i = ( — ¢4,
the second integral in (100) is written as

t%/p' T. L
9 = / aeYeo / YW o
J /t2/p/2 _ C / /(Ts _ y/)y/
The above integral can be evaluated readily.
7 [ t?
9 = o) <p/2 — 61). (102)
Substituting (96) and (102) into (100), we have
us t
I=—-, - . 1
1=y > /e (103)
From (91), (97), and (103), it follows
T 02 t
Iy = —— — 104
1= 530 f4(p,), (104)
where
t
0 , ? <+ er
f<t>— B (. Ve <L <yE . (105)
4p’ B IEER YT T| > T P 1 -
t
1 R VEL

Obviously, fi(yvZr—) = fa(yEr+) = 0 and fa(yE1—) = fa(\/Er+) =

1, it follows that f4(t/p’) is everywhere continuous.

t
0 5 ; < VET
Nz 12 ¢

t
0 , ;>\/5_1
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Since fj(1=) = 0, fi(14+) = 2yEr/(ex —er)p’s fi(t/p) has a
step discontinuity of 2,/ep/(e1 —erp)p’ at t/p) = /ep. Similarly,
fiVe=) = 2yer/(er —er)ps fi(Vet) = 0, fi(t/p)) has a step
discontinuity of —2,/21/(e1 —e7)p’ at t/p’ = /€1. Thus,

0 ;=< \/_

1 t _ 2 e .

! (p’) ) (e1—er)p? \/_T < j<ver . (107)
0 , o= > \/_

Then, the exact formula for Iy is Written as follows:

_ _Vep
fa = (51—5T) lﬁé( ) \/_5(t )]
0 , —<\/_
027'('
0 , ;>\/5_1

4.3. Evaluation of Eyy(p,m/2;t)

Substituting (68), (84), and (108) into (89), the exact formulas for Ey,
can be expressed in terms of elementary functions.

Bl 2)= s [V (1Y) v - )|

2meg(e1—er)ep

ct
0, ; < \/EL
—3/2
_ WETEL e2erer(e1—ep)3/? c2t2_€15L(51—5T) /
—erer (€2 —erer)5/? p? e2—ereyr ’
ct
1 Ve < ; < A\/ET
+27r50,03 2 Jerer | eferep(er —en)*?
e1—€er &1 —ereg (€2 — erer,)d/?
242 -
c°t eier(er —er) ct
X — VET < — < /€1
1P2 5% —ETEL ’ P Ve
ct
— = > /e
€1+ /ETeL’ p Vel

(109)
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It is seen that the first pulse has travelled at t = /epp/c along the
boundary in Region 2 with the velocity c\/er and the second one has
travelled at t = |/1p/c along the boundary in Region 1 with the

velocity ¢,/z7.
5. TIME-DEPENDENT COMPONENT B, DUE TO A

HORIZONTAL DIPOLE WITH A DELTA-FUNCTION
EXCITATION

When the horizontal electric dipole is radiated by a unit moment that
is a delta-function pulse in time, the vertical magnetic field, which is
real, can also be given by the following Fourier transform.

1.7 o
Bo,(p/,m/2;t) = ;Re/dw e By (p), 7/2;w). (110)

With (18), it follows that

_ J1(N'p')
iwt 2 1 p
BZZ(P 77/2 t) 62/d ¢ /d)‘ A \/w251_)\/2_|_\/w25T_)\/2'

(111)

With the definition N = w&, d\ = wd§, we write

Bo.(p',7/2;t) =

i#io §2d£ ! —iwt /
27T 628t2/\/51_§2+\/€T_€20/dw6 Jl(wfp)

(112)
Taking into account the relationship of (23), the result becomes

i ede 1 !
Ba:(p, m/2;) = 2%202 8t2/\/51—§2+\/6T ¢y (1 W)

R / §dg
22! 08| ) (Ver =+ er—E) VI[P —€ |
(113)

Following the same procedures in the evaluations of Iy and I3, the
evaluation of (113) can be carried out readily. When ¢/p’ < /e,

Bo.(p',m/2;t) = 0. (114)
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When /er < t/p’ < /€1, with the contour in Fig. 5, it becomes

o
R 1
Bor(plm/20) = 5 bt o / e /p,z (115)

With ¢ = €2, we get

2/p/2
BQz(p,’ 77—/2; t) /o ! [ / C t2/,0/2 ] . (116)

2m2c2p g1 — e 8t2

The integral in (116) has been evaluated in (96). Thus

BQz(p,’ﬂ-/Q;t) = _H ! iz |f2;< c >‘| \/eiT < - < \/_

Awc?p e — e Ot? p'?
(117)
When t/p" > /g1, with the contour in Fig.5, the result is
1o £d¢
Bo,(p/,m/2;t) =
2:(0, 7/2;1) 212c2/ ’8t2 [ Vel — 2 +iE —er

£d¢
(Ver =& +ive —er) - VE/p? = &

t
o

8
O\E

+

/ .
e iVE — g1 +i/E2 —er
§d§

t (o]
_%4 (IVE —e1 +iV/E —ep) - /T2 ]p? — 52]
_2#22[)/ 1 Lz [ / {dfm

Ve
e s

_t / cae Y ET_\/§2_51 ] (118)

t2/ 12
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Then,

w1 e
2n2c2p) g1 — e O?

e it | el

(119)

Bo,(p/,m/2;t) =

X

In terms of the variable ¢ = &2, d¢ = 2¢d¢, it follows

Ho 1 92
2m2c2p g1 — e Ot2

t2/p" t2/p"
x[t( /dc Vi—er / e YE=e )]
PN VB¢ ] R
(120)

The two integrals in (120) have been evaluated in (96) and (102). Then,
we get

Bo.(p/,m/2;t) =

Lo 1 02 {t ] t
Bo (g, m/2:t)= -0 = 9 1t_q1l, = 121
a2t = oL [Le-)], 2> vE o)
With substitutions (114), (117), and (121) into (113), it follows
Ho t
By, 2;t — 122
where
t
0 5 ; < \/ET

t 1t 2 t
50— ) = —~9\ 5 —€fr \/€T<;<\/€>1 - (123)

P g1 —€Tp Iy

Obviously, f(yE7—) = f(yaT+) = 0 and f(/E-) = f(VaT+) =

VEL, f5(t/p') is everywhere continuous.
t
0 y ; < \ET
t 1 3t? t
()= —— ]2 e < & (124
f5<p’) (e1—er) | o2 T :T ST ver (124
€&1—ér P > /e
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Since f5(ver—) = 0, f5(er+) = 2er/[(ex —er)p], f'(t/p') has
a step discontinuity of 2ep/[(e1 — er)p’] at t/p) = /ep. Similarly,

f'(Vei-) = Ber —er)/l(ex —er)p'], f'(Ver+) = 1/p, f'(t/p)) has a
step discontinuity of —2¢;/[(e1 —e7)p'] at t/p’ = /1. Thus

0 y —,<\/ET
0
, t) 1 t
Y= = b6t , Jar<—<. e . (125
7 (p’ (e1 — gT)pIS ! o (125)
0 y ;>\/€1

With substitution (125) into (122) and p’ = p/e, the exact formula
for the vertical magnetic field is expressed in terms of elementary

functions.
1 1 V/ \/
BQz(p77T/2at> = 2 9 €T6<t_ﬂ)_515(t_ﬂ>:|
2mepcip® el — €T c c
t
0 R % < VET
1 1 3ct ct
— — , JVer<—<4/e1 . (126
2repepder —er | p . ™0 t - (126)
0 , % > \/€1

6. DISCUSSIONS AND CONCLUSIONS

The exact formulas in terms of elementary functions are obtained in
time domain for the components of the EM field from a horizontal
electric dipole on the boundary between a homogeneous isotropic
medium and one-dimensionally anisotropic medium. Similar to the
isotropic case, the amplitude of the tangential pulsed electric field
along the boundary is 1/p?, which is characteristic of the surface-wave
or lateral pulse. Both the tangential electric field and the vertical
magnetic field consist of a delta-function pulse travelling in Region 2
(anisotropic medium), a oppositely directed delta-function travelling in
Region 1 (isotropic medium), and a final static electric field due to the
charges left on the dipole. The pulsed field consists of the first pulse in
Region 2 with the velocity c/,/er and the second pulse in Region 1 with
the velocity ¢/,/g1 for the component E,(p,0;t). Similarly, the pulsed
fields consist of a first pulse in Region 2 with the velocity ¢ /e7 and the
second pulse in Region 1 with the velocity c¢,/e1 for the components
Ey(p,m/2;t) and B;(p,7/2;t). Also it should be noted that the three
time-dependent components . (p, 0;t), B,(p,m/2;t), and Bg(p,0;t) of
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a horizontal dipole with a delta-function excitation are not expressible
in terms of elementary functions.

APPENDIX A. THE EVALUATIONS OF 9" AND 9

The two integrals 19[()1) and 1962) need to be evaluated.

t2/p/2

9 = d VC—eL o

0 E[ ¢ C[(E% —eper)C —erep(er —en) VP2 —C (A1)
£2/p2

9 = [ d Vi-—e1 e

0 EZ C[(sf —erer)C —erep(er —er) |V p% —C (A2)

Let T =t2/p'? —ep and 2’ = { — ¢, then

T
(' +ep)da’

/ (3 —erer) (2 +er) —e1er(er —er)|V/(T — /)2’

0
) ’ z'dz’
9P = / (A4
0 ] [(e% —eper)(2' +er) — e1er(e1 — er)|V/(T — /)2’ (44)

95" = , (A3)

LetE:mandm:m’—l—E,then

Ef—ETEL

T+E

19(()1) _— 1 / (z—E)(J:JreL—E)dx’ (A5)
el —erer z/(T+FE—-z)Vz—FE
. T+E (v B)d
o) = / s . A6
0 €2 —ereyr /(T +FE—-x)Vz—E (A6)

E
Let X = (T+FE—z)(z—E)=—-E(T+ E)+ (T +2E)x — 22, then
1 T ed
o - / rar. _9F
0 8% P J X1/2 +(5L )

T+E

T+E d d
X X
< [ sin-Ee-B) [ wa}’ (A7)
E E
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) T+E 4 T+E J
19(2) _ / ax E / _ar . A8
0 €2 —ereyr, X1/2 xX1/2 (A8)
E E
So that
o - T ﬁ_g 2€1€L(€1—€T)_261\/ET€L€L(€1—€T)
0 2(e2—erer) | P2 e2—erer €2 —ereyr
€2 —epep t2 erep(er —er) —1/2 A
N e T ’ (A9)
&1 — €L p €1 — €L
2 2 —1/2
- t e1er(e1 —er)
g T ) %[51 ereg 1° } ‘
0 (8% — 5T€L) ETEL €1 — €L p’2 €1 — €L
(A10)

APPENDIX B. THE EVALUATIONS OF 9 AND ¢

The two integrals 2921) and 1922) need to be evaluated.

t2/pl2
I )
J [(e1 —erer)( —eren(er —en)]Vt?/p* — ¢
t2/pl2
0@ = [ ac Ve —er (B2
S E —eren)C —eren(er —en)VE /0% = C
Let T. = t?/p”? — 1 and v/ = ¢ — €1, then
I i /
9 _ y' (Y +e1)dy (B3)
: ) (el —eren)(y' +e1) —ererler —en)V(T - ¥y
T,
Idy/
9@ = / Y . (B4
ey o) — 21— e VT =y

0

200 _
Let E. = 512(517%) and y =y + E., then

E1ETEL
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Te+E;
€1 —ETEL 2 y\/(T€+E€ _y)\/y_Es
Te+Ee
92 _ 1 (y - Ea)dy (BG)

N €2 —erer J yV (T + E. —y)Jy — E-

€

Let Y = (TE + E. — y)(y - FE.) = _Ee(Te + E.) + (Ts +2E, )y — y27
then

. 4B
g — b / Yy 9B,
e - pp— { Vi + (&1 )
TevBe B
Y Y
X m — EE(EI — EE) W}, (B?)
E. E-
Te+E. Te+FEe
1 d d
@ - - a9y _Y
v = S €T€L{ E/ y1/2 E. / yY1/2 } (BY)
So that
g m o . 2e1ep(e1 —er)  2efep(er —er)
€ 2(e2 — eqer) | p? €2 —erey, €2 —erey,
x {5% —erep ' erer(er 5T)] o : (BY)
e1—er p? €1 —€L
U S (R R R
} (3 — erer) e1—ep p? €1 —€L '
(B10)
APPENDIX C. THE EVALUATION OF o
The integral 19(()3) will be evaluated.
t/p'
9 = / & Ve — &L (C1)
‘ ¢ [(ef —erer)¢ —erepler —en) V2 /p? = ¢

€L
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Let o' =( —ep, T=1%/p* —¢p, and E = w then

El ETEL

T

9B _ / x'dx’
0 —aT&tLO (' +ep)(a' + E)/(T — x')a’

B 1 1 {/ a'dx’
el —ereperL— E ) (o' + E)/(T — 2")2’

T

/ (' +ep)/(T —2')a’ —x’)ﬂ:’}

0

B 1 {/ o' dx’
 eren(er —er) / (' + E)\/(T — ")’

T , x/
- O/ (' + sL)x d(T — &) } (C2)

Letx:m’—i-EanXm:(T+E—x)(a:—E), then

T

x'dx’ E)dx
/ T+ E)\/(T—2a') x\/T—i-E—:I:( —F)

T+E T+E

dx dx
- /Xl/Q_E / le/Q
E

E 1
—eTE] t2 515L(51—5T)}1/2
=mil—/ere e :
{ T e —ep —€L P €1—€L
(C3)
Similarly, let x = 2’ + e, and Xo = (T'+ e, — z)(x — €1, then
T T+
/ x'dx’ B - (x —ep)dx
/ (' + ep) V(T — 2’2’ : /(T +ep —x)(xz—ep)
L
TH+er, T+er,

_/ dzx 7/ dzx
x* e X7

€L

- l1 - @(;—Z)_m]. (C4)
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With substitutions (C3) and (C4) into (C2), we get

- 2\ —1/2
9 - )l@@)

eier(er —erp p
2 2 —1/2
ef —erer, t eieplel —er
—VereL {1_/2 - (_)} - (CH)
€1 —EL p €1 — €L

APPENDIX D. THE EVALUATION OF ¢®

The integral 19&3) will be evaluated.

t/p'
9B — /@ Vi—&a oD
: & ¢ [(5%_5T5L)C—515L(81 —ep)Vt2/p? — ¢

200 _
Lety =C—e1, T. =t?/p"? — 1, and E. = 612(61 °L) then

e{—¢erer ’

T
1 y'dy

93 — /
c €] —erer ) (W + )y + E)V(T =)y

T:

B 1 1 y'dy’
el —erepe1 — E: { 0/ (Y + E) V(T —y)y
Te /3.0
St
) W e VT =)y

T:

- 1 {/ y'dy’
eier(er —er) ) W+ E)V(T: —y)Y

T
y'dy’
NArEs = 7t 2

Let y=9' + E-. and Y = (Te + E. — y)(y — E-), then

Te+Ee
y'dy B (y — E)dy

O/(y’+Es) T-—y)y Lyt B —y)ly - Eo)

€
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Te+E. Te+E.
. / dy > / dy
- 1/2 € 1/2
E. )/1/ E. le/
I P [5?5T5Lﬁ_515L(515T) —1/2
Hoei—ep p? €1—¢€L '

(D3)

Similarly, let y =y’ + 1 and Y5 = (T- + ¢1 — y)(y — €1), then

T ’ ’ Te+e1
/ y'dy —e1)dy
(y +e1)V/(T. yv/ (Te +81 y)(y —€1)
TE—‘rEl Te+er
B dy dy
- 172 1/2
€1 Y2 €1 )/2

- [1 _ \/a(;_Z) _1/21 . (D4)

With substitutions (D3) and (D4) into (D2), we obtain

- £2\ —1/2
= e ()

eiep(er —er

5% —erep t2 erep(er —er) —1/2 D5
MNe—er 7 a-en - (DY)
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