Vol. 53
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-02-05
Excitation and Detection of Waves in the FDTD Analysis of n -Port Networks
By
, Vol. 53, 249-269, 2005
Abstract
An FDTD methodology is provided herein that allows for TEM excitation and detection of signals associated with N-port network analysis. The scheme is based upon the numerical solution of Laplace's equation in the context of the standard Yee grid. The invocation of both equivalence and orthogonality of modes principles assures that the TEM mode of interest is both exclusively excited and detected. Electric and magnetic surface currents are employed to render zero backward radiation from the source plane. Orthogonality is utilized at the terminal plane to extract the TEM mode from a multi-mode signal, provided that the spectrum of the guiding structure is discrete. The advantage of this approach is found in the placement of both the terminal and source planes — both can be placed as close to each other and to the network as necessary, thus alleviating the computational and memory burdens of the simulation. Examples pertaining to this methodology include stripline structures and the monopole strip antenna. The microstrip patch antenna is also considered to demonstrate the difficulties associated with the excitation and detection of quasi-TEM signals in the midst of radiation terms.
Citation
Jeffrey Young, and Ryan Adams, "Excitation and Detection of Waves in the FDTD Analysis of n -Port Networks," , Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701
References

1. Collin, R. G., Field Theory of Guided Waves, 2nd edition, 1991.

2. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 7, 849-856, 1990.
doi:10.1109/22.55775

3. Luebbers, R. J. and H. S. Langdon, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations," IEEE Trans. Ant. Propagat., Vol. 44, No. 7, 1000-1005, 1996.
doi:10.1109/8.504308

4. Buechler, D. N., D. H. Roper, C. H. Durney, and D. A. Christensen, "Modeling sources in the FDTD formulation and their use in quantifying source and boundary condition errors," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 810-814, 1995.
doi:10.1109/22.375228

5. Piket-May, M., A. Taflove, and J. Baron, "FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 8, 1514-1523, 1994.
doi:10.1109/22.297814

6. Swanson, D. G. and W. J. R. Hoefer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House, 2003.

7. Harrington, R. F., Time-Harmonic Fields, McGraw-Hill, 1961.

8. Railton, C. J. and J. P. McGeehan, "The use of mode templates to improve the accuracy of the finite difference time domain method," 21st European Microwave Conf., 1278-1283, 1991.

9. Celuch-Marcysiak, M., A. Kozak, and W. K. Gwarek, "A new efficient excitation scheme for the FDTD method based on the field and impedance template," IEEE Antennas and Propagat. Soc. Int. Symp., Vol. 2, No. 7, 1296-1299, 1996.

10. Craddock, I. J., D. L. Paul, C. J. Railton, P. N. Fletcher, and M. Dean, "Applications of single mode extraction from finite difference time domain data," IEE Proc.-Microwave and Ant. Propagat., Vol. 146, No. 2, 160-162, 1999.
doi:10.1049/ip-map:19990562

11. Gwarek, W. K. and M. Celuch-Marcysiak, "Wide-band S-parameter extraction from FDTD simulations for propagating and evanescent modes in inhomogeneous guides," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 8, 1920-1927, 2003.
doi:10.1109/TMTT.2003.815265

12. Alexópoulos, N. G., "Integrated-circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 10, 847-881, 1985.
doi:10.1109/TMTT.1985.1133145

13. Zhao, A. P. and A. V. Räisänen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 9, 1535-1539, 1996.
doi:10.1109/22.536601

14. Pozar, D. M., Microwave Engineering, 2nd edition, 1998.

15. Silver, S., Microwave Antenna Theory and Design, McGraw-Hill, 1949.

16. Van den Berghe, S., F. Olyslager, and D. De Zutter, "Efficient FDTD S-parameter calculation of microwave structures with TEM ports," IEEE Ant. and Progat. Soc. Int. Symp., Vol. 2, 1078-1081, 1999.

17. Elliot, R. S., Antenna Theory and Design, Revised edition, 2003.

18. Maloney, J. G., G. S. Smith, and W. R. Scott, "Accurate computation of the radiation from simple antennas using the finite-difference time-domain method," IEEE Trans. Ant. Propagat., Vol. 38, No. 7, 1059-1068, 1990.
doi:10.1109/8.55618

19. Schneider, J. B., C. L. Wagner, and O. M. Ramahi, "Implementation of transparent sources in FDFD simulations," IEEE Trans. Ant. Propagat., Vol. 46, No. 8, 1159-1168, 1998.
doi:10.1109/8.718570