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Abstract—An FDTD methodology is provided herein that allows
for TEM excitation and detection of signals associated with N -port
network analysis. The scheme is based upon the numerical solution
of Laplace’s equation in the context of the standard Yee grid. The
invocation of both equivalence and orthogonality of modes principles
assures that the TEM mode of interest is both exclusively excited
and detected. Electric and magnetic surface currents are employed to
render zero backward radiation from the source plane. Orthogonality
is utilized at the terminal plane to extract the TEM mode from
a multi-mode signal, provided that the spectrum of the guiding
structure is discrete. The advantage of this approach is found in
the placement of both the terminal and source planes — both can
be placed as close to each other and to the network as necessary, thus
alleviating the computational and memory burdens of the simulation.
Examples pertaining to this methodology include stripline structures
and the monopole strip antenna. The microstrip patch antenna is
also considered to demonstrate the difficulties associated with the
excitation and detection of quasi-TEM signals in the midst of radiation
terms.
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1. INTRODUCTION

An electromagnetic problem suitable to numerical analysis is the N -
port network, referred to in this paper as the device under investigation
(DUI). Each port of the network is defined in terms of a terminal
and source plane on some transmission line or waveguide, as shown in
Figure 1. (An antenna is regarded as a one-port network in this paper.)
To properly characterize the DUI in terms of a linear combination of
port voltages and/or currents, it is imperative that it is done in the
context of a particular mode of operation [1], usually the dominant
mode of the waveguide. For homogeneous, two-conductor waveguides,
such as the stripline and the coaxial cable, the dominant mode is the
TEM mode; for inhomogeneous structures, such as the microstrip, it
is the quasi-TEM mode.

Source Plane
1

2 N

n

+

−

V
+

V
− −

V
+

−

+
V1

V1

2

2

N

VN

Vn

Vn

Terminal Plane

Figure 1. An N -port network.

A typical method for exciting the dominant mode at the source
plane is to place soft or hard sources in the vicinity of the conductors
that form the waveguide [2–4]. Depending upon their configuration,
these sources will accomplish their intended purpose with some efficacy,
with the additional outcome of exciting higher order modes, radiation
waves and surface waves, if such modes or waves are part of the
waveguide’s spectrum of operation. Unfortunately, these undesirable
modes and waves can adversely interact with the DUI if the waveguide
propagates more than one mode or if the source plane is placed too close
to the DUI. When such interactions occur, a unique characterization
of the network is difficult.

With respect to the detection of TEM signals at the terminal
plane, the standard practice is to integrate the electric intensity along
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some line (that lies in the plane of the terminal plane) between the
two conductors of the waveguide to obtain the voltage between the
conductors [5]. This approach is valid if the waveguide is exclusively
guiding a TEM wave at the terminal plane, in which case the voltage
is independent of the integration path. However, if other modes or
radiation fields are created by the network, the voltage will be path
dependent and hence, not unique. Similarly, by means of Ampere’s
law, the conduction current is typically obtained by integrating the
magnetic intensity on some closed path on the terminal plane about
the conductor [5]. If longitudinal displacement currents exist, then
the result of that integration will be the total current, not the
desired conduction current, whose value also depends on the path of
integration. Thus, when higher order modes or radiation fields exist
at the terminal plane, the concept of voltage and current is ambiguous
and the network parameters based on these voltages and currents are
invalid. The natural, but impractical, way to assure valid computation
of the port voltages and currents is to place the terminal plane “far”
from the DUI in hope that all non-TEM terms are negligible.

An unambiguous characterization of the DUI requires not only
a precise understanding of both the excitation field at the source
plane and the response field at the terminal plane but also a recipe
for where the source and terminal planes can be placed to get valid
terminal plane data [6]. To avoid the excitation of unwanted modes and
fields, impressed electric and magnetic surface currents on the source
plane can be designed to couple exclusively to the mode of interest
by means of equivalence principles. For example, if Eta and Hta are
the transverse electric and magnetic intensities of the ath mode, as
obtained from the homogeneous solution of Maxwell’s equations for
some waveguiding structure, then the ath mode is exclusively excited
if electric and magnetic surface currents are defined as n × Hta and
Eta × n, respectively, on the source plane. Here n is the unit normal
vector in the direction of propagation. Although only one impressed
source is needed to excite the desired mode, both are used to assure a
null field behind the source plane, per the equivalence theorem [7].
The null field attribute allows the terminal plane to be placed in
front of or behind the source plane, depending on whether the scheme
is to be regarded as a total or scattered field formulation. When
the mode of interest is the TEM mode, the homogeneous solution is
constructed using static potential theory. In the context of an FDTD
algorithm, the potential solution can be found using a finite difference
procedure in conjunction with the standard Yee grid, as shown herein.
This excitation procedure has some commonality with presimulation
and mode template methods [8, 9], but does not require single mode
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waveguide operation.
With respect to the detection problem, these same transverse fields

Eta and Hta can be used in conjunction with modal orthogonality
to isolate the mode of interest from the total signal [1, 10, 11]. If the
mode of interest is the TEM mode, then the results from orthogonality
can be used to find unique terminal plane voltages and currents.
Moreover, when current sheet excitation is used in conjunction with
orthogonal mode detection, the source and terminal planes can be
placed arbitrarily close to each other.

The significant obstacle to detecting the mode of interest (TEM,
TM or TE) is isolating that mode from the total signal when modal
orthogonality is not valid. This can occur, for example, with open
transmission lines such as the parallel wire or the microstrip. Consider
the former connected to a center-fed, half-wave dipole. The parallel
wire does support the TEM mode, which can be exclusively excited
using properly defined impressed current sheets. The excited TEM
wave will travel towards the dipole, with some of the incident signal
coupling to the dipole’s radiation field and some of the remaining
signal reflecting back towards the source plane in terms of TEM, TE
and/or TM modes. If that were the entire picture, then the mode
of interest could be extracted from the reflected signal by means of
orthogonality. Unfortunately, the parallel wire’s spectrum is comprised
of a radiation field that is excited by the dipole. The presence of the
radiation field renders the isolation of the mode of interest from the
total signal by means of orthogonality ineffectual. (The same would
hold true using simple line integral methods.) Other than moving the
terminal plane infinitely far from the dipole, where the radiation field is
negligible in comparison to the propagating mode (assuming of course,
a lossless line), it appears for this case that no unambiguous method
exists for uniquely characterizing the signal at the terminal plane.
The conundrum of this example, of course, is that the transmission
line and the dipole cannot be considered as two distinct pieces of
hardware. A similar discussion can be applied to the microstrip-fed
patch antenna, with one additional difficulty: the quasi-TEM mode is
not exclusively excited using the electrostatic potential. On the other
hand, the coaxially-fed monopole is quite easy to characterize using
modal orthogonality, given that the coax is a closed waveguide that
supports only orthogonal modes.

Examples such as the coaxial monopole and the microstrip-fed
patch are provided in this paper to demonstrate the salient features
of the theory. The theory is couched in terms of the numerical FDTD
algorithm, but is in nowise restricted to this one algorithm, numerical
or otherwise.
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2. TEM EXCITATION

Consider a lossless, two-conductor waveguide that is surrounded by a
homogeneous material. It is well known that this waveguide supports
a TEM wave that can be represented in terms of a transverse static
field and a longitudinal propagation factor f(t−z/vp), for propagation
in the positive z-direction at a phase speed of vp [1]. For the electric
intensity E, that representation is

E = Etsf(t− z/vp), (1)

where Ets is the transverse static electric intensity, which, for Cartesian
coordinates, is given by

Ets = Exsax + Eysay = −∇tφ = −
(
∂

∂x
ax +

∂

∂y
ay

)
φ. (2)

Here φ = φ(x, y) is the electrostatic potential in the transverse plane,
which is a solution to Laplace’s equation,

∇t · (ε∇tφ) = 0. (3)

In the preceding equations, ∇t is the transverse del operator and ε is the
permittivity of the material. For homogeneous materials, the previous
equation reduces to ∇2φ = 0 and E of Eqn. (1) is an exact solution to
Maxwell’s equations. For inhomogeneous materials, E is not a valid
solution to Maxwell’s equations; it may be, however, an approximate
solution for the quasi-static TEM mode, under certain circumstances
[12]. The potential is also subject to the boundary condition

φ = Vn (4)

on conductor n, where n = 1, 2, . . . , N of an N conductor system. For
example, for a balanced shielded-pair, N = 3 with the shield set to
ground potential and the two inner conductors set to ±Vs/2 Volts,
where Vs is the voltage between the two inner conductors. As for the
magnetic intensity H, we write

H = Htsf(t− z/vp), (5)

where Hts is the transverse static magnetic intensity:

Hts = Hxsax +Hysay = −1
η
az ×∇tφ, (6)

with η being the characteristic impedance of the material that supports
the waveguide’s conductors.
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One way to excite these TEM fields is to establish a set of
impressed current sheets Js and M s on the z = z0 plane in accordance
with equivalence principles:

Js = az × H
∣∣∣
z=z0

= (Hxsay −Hysax)f(t− z0/vp) (7)

and
M s = E × az

∣∣∣
z=z0

= (Eysax − Exsay)f(t− z0/vp). (8)

Per the equivalence theorem, these currents are assured to create the
E and H fields of Eqns. (1) and (5) in the region z > z0 and the null
field in the region z < z0 [7]. It should be noted that both J and M
are not needed to create a forward going wave. The presence of both
only ensures a zero negative going wave; the omission of either J and
M will result in both a forward and negative going wave emanating
from the source plane.
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Figure 2. The two-dimensional (2D) TE-to-z and TM-to-z Yee cells.

The crux of creating the aforementioned impressed currents relies
on finding the solution to Eqns. (3) and (4) numerically, or otherwise.
To solve Laplace’s equation numerically, a finite-difference approach
is invoked in conjunction with the grid of Figure 2. The potential is
located in the center of the TMz two-dimensional (2D) Yee cell with the
magnetic intensity components placed about it in accordance with the
standard FDTD procedure. The potential is also located at the vertices
of the TEz 2D Yee cell with the electric intensity components placed
about it in accordance with the standard FDTD procedure. Even
though these two 2D cells are displaced from one another in z by a half
cell in the standard 3D cell, this is of no consequence in the calculation
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of the static fields since φ is not a function of z - the cell displacement
is accounted for in the propagation factor f(t− z/vp). Using the index
scheme of Figure 2 and the central difference representation of the
Laplacian, we approximate Eqn. (3) with

α1φi−1,j + α2φi,j−1 + α3φi,j + α4φi,j+1 + α5φi+1,j = 0, (9)

where φi,j denotes the value of φ at node i, j. Also, α1 =
εi−1/2,j/δ

2
x, α2 = εi,j−1/2/δ

2
y , α4 = εi,j+1/2/δ

2
y , α5 = εi+1/2,j/δ

2
x and

α3 = −
εi+1/2,j + εi−1/2,j

δ2x
−
εi,j+1/2 + εi,j−1/2

δ2y
; (10)

here δx and δy are cell lengths. In the above equations, εi−1/2,j ,
for example, denotes the value of the permittivity half way between
the potential nodes i, j and i − 1, j. For homogeneous media,
the permittivity is constant and common among all the Laplacian
coefficients; for this case, the permittivity terms can be omitted.
Eqn. (9) is applied to every interior node in the domain. For boundary
nodes, we replace Eqn. (9) with φi,j = Vi,j , where Vi,j is the impressed
voltage at node i, j. The system of equations produced by Eqn. (9)
and the boundary equations is solved once at the beginning of the
simulation using standard iterative techniques of sparse matrices.
Given that the system characterizes a two-dimensional domain, the
overhead in computing φi,j is trivial.

Once φ is known at every point in the transverse plane, the static
fields are calculated using central differences. From Eqns. (2) and (6)
and from Figure 2,

Exs(i, j) = ηHys(i, j) ≈ −φi+1,j − φi,j

δx
(11)

and
Eys(i, j) = −ηHxs(i, j) ≈ −φi,j+1 − φi,j

δy
. (12)

Finally, the components of the impressed currents are conjoined
with the components of the previous static field on the Yee grid
in the following manner: Jxs(i, j) = −Hys(i, j), Jys(i, j) =
Hxs(i, j), Mxs(i, j) = Eys(i, j) and Mys(i, j) = −Exs(i, j).

With the transverse impressed currents so determined, the final
step is to incorporate these currents in the leap-frog integration scheme
similar to that of [13]. This is accomplished by delaying one current
density by a half time-step relative to the other. With δt being the
time step, the integrated form of Maxwell’s equations becomes

εEn+1/2 = εEn−1/2 + δt∇× Hn − δtJ
n
s (13)
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and
µHn+1 = µHn − δt∇× En+1/2 − δtM

n+1/2
s , (14)

where it is understood that the source plane for Js is one half cell away
from the source plane for M s. Given that the static transverse fields
are computed once at the beginning of the simulation and stored for
future use, the computational burden of incorporating the impressed
currents into Maxwell’s equations is negligible.

The final step in the implementation of the excitation scheme is to
compute the value of vp from the potential function. (Recall that vp is
needed in the propagation factors in Eqns. (7) and (8)). Moreover, in
anticipation of some information needed in the detection scheme, the
potential can also be used to compute the waveguide’s characteristic
impedance, inductance per unit length, capacitance per unit length
and effective permittivity as follows. Consider a typical two conductor
transmission line with one conductor fixed at a known potential Vs and
the other held at zero potential. By definition,

Vs = −
∫

l1
Ets · dl, (15)

where l1 is any path between the two conductors. With the static
magnetic intensity known from the potential function, it can be
integrated about the conductor to find the TEM conduction current
Is, per Ampere’s law — to wit,

Is =
∮

l2
Hts · dl, (16)

where l2 is any path about one of the conductors in the sense of the
right hand rule. The conductor’s potential Vs divided by its current
Is is the characteristic impedance Z0 of the transmission line. The
potential function can be used to construct the normal component
of the electric intensity next to the conductor; this component is
proportional to the charge density, per Gauss’s law. The charge density
is integrated about the conductor to find the total charge on the
conductor Qs, which is subsequently used to find the capacitance C via
Qs/Vs. The inductance L, phase speed vp and effective permittivity
εe of the material are computed using the following: L = CZ2

0 , vp =
1/

√
LC and εe = (c/vp)2, where c is the speed of light [14]. All of these

quantities (i.e., Is, Z0, etc.) are computed once at the beginning of
the simulation; two of these quantities (i.e., Vs and Is) are used in the
detection scheme, as described next.
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3. TEM DETECTION

To detect the TEM mode in the midst of other modes, the principle of
modal orthogonality is invoked. This is accomplished by recognizing
that the transverse fields of a closed transmission line (i.e., coaxial
cable, stripline, shielded pair, etc.) with an arbitrary cross-sectional
shape S, a homogeneous dielectric, and no conduction losses can be
represented in terms of a weighted sum of orthogonal wave functions
at the terminal plane [1]:

Et =
∑
a

BaEta (17)

and
Ht =

∑
a

CaHta, (18)

where Eta and Hta are transverse mode functions of the ath mode
and Et and Ht are the total transverse fields of the simulation at the
terminal plane. The excitation coefficients Ba and Ca are frequency
dependent, except for the TEM mode. The TEM mode will be
identified as a = s and the transverse mode functions for the same
are given by Eqns. (2) and (6). By making use of the inner product

< Eta,Etb >≡
∫

S
Eta · EtbdS, (19)

and the orthogonality relationship

< Eta,Etb >≡ 0 for a 	= b, (20)

we note that
Ba =

< Et,Eta >

‖Eta‖2
, (21)

where ‖Eta‖2 ≡< Eta,Eta > [15]. Similarly,

Ca =
< Ht,Hta >

‖Hta‖2
. (22)

The method of computing the aforementioned inner products is
accomplished by a double summation of weighted stair-step and piece-
wise linear functions; the weights are the values of the nodal fields on
the grid [10]. For example,

< Ex, Exs >≈
δxδy
2

I2∑
i=I1

J2∑
j=J1

Ex(i, j)Exs(i, j)+Ex(i, j+1)Exs(i, j+1);

(23)
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here I1, I2, J1 and J2 span the cross-sectional domain of the waveguide.
The norm of the electrostatic fields is computed once at the beginning
of the simulation. A similar method using power orthogonality is
described in [11, 16].

With the TEM modal coefficients known, the line voltages V and
currents I are uniquely determined by their corresponding line integrals
of electrostatics. For the voltage,

V = −
∫

l1
BsEts · dl = BsVs, (24)

where Vs is the impressed electrostatic line voltage. For the current,

I =
∮

l2
CsHts · dl = CsIs, (25)

where Is is the electrostatic line current previously computed by Eqn.
(16). Hence, the crux of the detection problem rests on the numerical
calculation of Eqns. (21) and (22) at the conclusion of each time step
in the simulation (or whenever such information is needed). The
computational resources needed, however, to compute these coefficients
is negligible.

4. SOURCE AND TERMINAL PLANES

The previous excitation scheme assures that the mode under
investigation is being exclusively excited with no backward wave
radiation. The detection scheme assures that the mode under
investigation is extracted from all other modes that comprise the signal.
Thus, the location of the terminal and source planes can be placed as
near to each other and as near to the DUI as needed. As such, the
source plane need not be placed on the computational boundary, as
suggested in [6]. If the terminal plane is placed behind the source plane,
then the data recorded at the terminal plane will only be associated
with reflected waves from the DUI. In this context, we may regard
the source/terminal plane configuration in terms of a scattered field
configuration. If the terminal plane is placed in front of the source
plane, as shown in Figure 1, then the data recorded at the terminal
plane will be the total signal and the configuration is total field.
The incident and reflected partial voltages, V + and V −, respectively,
can be extracted from the total voltage V and current I via the
following relationships: V + = (V + IZ0)/2 and V − = (V − IZ0)/2.
These equations assume that V or I has been temporally averaged
in order to remove the δt/2 delay between the two. The partial
voltages are then used to find the scattering network parameters,
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Figure 3. Field lines of transverse E on the xy-plane for surface
current excitation.

provided that the transmission lines are match-terminated (or that
the antenna receives no incoming radiation from the computational
domain’s boundary). This condition is easily satisfied by using a
high quality, perfectly matched layer domain truncation scheme or
absorbing boundary condition.

5. NUMERICAL RESULTS

A demonstration of the excitation scheme can be provided by
considering a simple stripline geometry that is excited by a line source
and by current sheets of Eqns. (7) and (8). A gaussian waveform is
assumed for the pulsing function and the center strip is assumed to be
z-directed and on the xz-plane. The field lines of transverse E and H
for current sheet excitation, as plotted in Figures 3 and 4, respectively,
have the expected fringing and circulation properties. Moreover, the
strengths of Ez and Hz are a factor of 10−6 to that of their transverse
counterparts in both early and late time data, thus substantiating
the true TEM nature of the excited pulse. Although not shown, a
spatial plot of E and H under the strip and as a function of strip
distance reveals a pure gaussian pulse (in both early and late time)
being generated at the source plane with no backward radiation. For
line source excitation and as seen in Figure 5, there exists the expected
coupling of the line source to the higher-order stripline modes and to
the natural modes of the parallel plates that form the ground planes of
the stripline. The result of this coupling is a distorted gaussian pulse
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Figure 4. Field lines of transverse H on the xy-plane for surface
current excitation.

Figure 5. Contour lines of Ey on the xz-plane for line current
excitation.

and bi-directional propagation.
To demonstrate the validity of the detection scheme, we examine

four scenarios — two of which are associated with simple stripline
geometries, one with a coaxially-fed monopole and one with a
microstrip-fed rectangular patch antenna. In all cases, the DUIs
are pulsed using a gaussian waveform and surface current excitation;
the recorded voltage and current data are transformed into their
frequency-domain counterparts using standard FFT techniques. Both
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Figure 6. A transversely shorted stripline (not drawn to scale); top
grounding plate not shown.

line integral detection (LID) and orthogonal integral detection (OID)
are considered for the purpose of comparative analysis. Note: line
integral detection refers to the traditional method of detection as
discussed in the Introduction or in [5]; orthogonal integral detection
refers to Eqns. (24) and (25).

Consider first Figure 6, which shows a transversely shorted
stripline; the permittivity of the stripline is that of free space. Note
that the short circuit is purposefully not balanced in order to excite
high-order evanescent modes in the vicinity of the shorting plane
by disrupting transverse E. The FDTD simulation parameters are
δx = 0.01 cm, δy = 0.01 cm, δz = 0.01 cm, and δt = 0.1 ps; the domain
spans 21 cells in x, 151 cells in y and 13 cells in z. The frequency-
domain reflection coefficient data associated with this figure are shown
in Figure 7. The four reflection coefficient plots correspond to the
following cases: a) terminal plane at 1 cell from the short using LID,
b) terminal plane at 1 cell from the short using OID, c) terminal plane
at 132 cells from the short using LID and d) terminal plane at 132 cells
from the short using OID. In each of these cases, the source plane is
5 cells from the computational domain. As expected, the data shows
perfect reflection for low frequencies; for high frequencies the reflection
coefficient deviates from 0 dB due to the nonperfect shorting plane.
More importantly, the OID method yields reflection data that are not
a function of terminal plane location; the LID method yields data
that are a function of terminal plane location. Both observations are
consistent with expectations. The former filters out the TEM mode
and since this mode does not decay, the reflection data is the same
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Figure 7. Reflection coefficient data for the transversely shorted strip
associated with four cases: a) terminal plane at 1 cell from the short
using LID, b) terminal plane at 1 cell from the short using OID, c)
terminal plane at 132 cells from the short using LID and d) terminal
plane at 132 cells from the short using OID.

regardless of the terminal plane location; the latter can only yield
correct data when the TEM mode is exclusively propagating, which
will be the case when the terminal plane is far from the short.

Using a larger computational domain, we repeated the previous
experiment by considering an unbalanced short placed in the
longitudinal plane in order to disrupt circulating H. The reflection
coefficient data associated with this case are shown in Figure 8. Similar
conclusions to those made about the data for the transverse short
configuration can be made for the longitudinal short. That is, the
OID method yields reflection coefficient data that are independent of
terminal plane placement; the LID method is terminal plane placement
dependent.

The same set of numerical experiments can be made with respect
to the strip monopole, as shown in Figure 9. The simulation
parameters are δx = 1 cm, δy = 1 cm, δz = 1 cm, and δt = 9.63 ps;
the domain spans 51 cells in x, 121 cells in y and 51 cells in z. The
relative permittivity of the coaxial cable is unity. Admittance data
for this structure are shown in Figure 10 for both OID and LID when
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Figure 8. Reflection coefficient data for the longitudinally shorted
strip associated with four cases: a) terminal plane at 1 cell from the
short using LID, b) terminal plane at 1 cell from the short using OID,
c) terminal plane at 232 cells from the short using LID and d) terminal
plane at 232 cells from the short using OID.
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Figure 9. A strip monopole (not drawn to scale).
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Figure 10. Admittance data for the strip monopole when the terminal
plane is in the plane of the coaxial aperture. With Y = G + jB, the
six cases are a) G data using OID, b) B data using OID c) G data
using LID, d) B data using LID, e) G data from [18] and f) B data
from [18].

the terminal plane coincides with the ground plane. The source plane
is 5 cells from the computational boundary. Experimental data for a
circular monopole (whose center wire radius is equal to the effective
radius of the strip per Elliot [17] and whose characteristic impedance
is the same as the strip monopole) are also plotted in Figure 10 to
establish a point of reference [18]. Even with the terminal plane in
the plane of the coaxial aperture where higher order modes are most
strongly excited, it is clear from the plot that the OID data coincide
more closely with the experimental data than the LID data. The
slight shift in the resonant frequency is attributed to the differences
between the circular (experimental configuration) and rectangular
(FDTD configuration) cross-sectional geometries.

The final example considered in this paper is the microstrip-
fed patch antenna, per the specifications of Sheen et al. [2]; see
Figure 11. The simulation parameters are: δx = 0.04 cm, δy = 0.04 cm,
δz = 0.0265 cm, and δt = 0.32 ps; the domain spans 61 cells in x, 101
cells in y and 17 cells in z. Reflection coefficient data associated with
the following cases are plotted in Figure 12: a) terminal plane at 1
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Figure 11. A microstrip-fed patch antenna (not drawn to scale).

cell from the patch using LID, b) terminal plane at 1 cell from the
patch using OID, c) terminal plane at 42 cells from the patch using
LID, d) terminal plane at 42 cells from the patch using OID, e) FDTD
data from [2] and f) experimental data from [2]. The source plane is
placed 5 cells from the computational domain. For this situation all
computational methods yield slightly different results, particularly at
high frequencies. And, since the microstrip does not support a pure
TEM mode, all numerical results are equally right or wrong. The
point in this case is that the LID method requires that the field data
be TEM in order for the calculated voltages and currents to be unique;
the OID method requires orthogonality among the modes, which is not
the case, due to radiation and surface waves that are excited by means
of reflection from the patch. The experimental data is the correct data
only because the terminal plane is within the coaxial test connector,
where the TEM mode exists. For the simulation results to agree with
the experimental results, the simulation must include the coax-to-
microstrip connector. If it does, then the OID method can be used
with confidence to yield accurate data, per the many aforementioned
numerical experiments.



266 Young and Adams

0.0 5.0 10.0 15.0 20.0
Frequency (GHz)

50.0

40.0

30.0

20.0

10.0

0.0

10.0

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t (

dB
)

CaseA
 B
 C

 

D
E
F

Case
Case
Case
Case
Case

−

−

−

−

−

Figure 12. Reflection coefficient data for the microstrip-fed patch
antenna associated with following cases: a) terminal plane at 1 cell
from the patch using LID, b) terminal plane at 1 cell from the patch
using OID, c) terminal plane at 42 cells from the patch using LID and
d) terminal plane at 42 cells from the patch using OID, e) FDTD data
from [2] and f) experimental data from [2].

6. CONCLUDING REMARKS

In this paper we have endeavored to put the excitation and
detection problems of signals from N -port networks on firm footing
in the context of the FDTD algorithm. Single mode excitation is
assured when electric and magnetic surface currents are constructed
using equivalence principles and homogeneous solutions of Maxwell’s
equations. Unique voltages and currents are recorded at some terminal
plane using modal orthogonality, provided that the waveguide’s
spectrum is discrete. This excitation and detection scheme removes
all ambiguity with respect to the placement of the source and terminal
planes. To lessen the size of the computational domain and to minimize
numerical errors such as dispersion errors, the natural choice is to place
these planes as close to the DUI as possible.

The costs of employing this method are twofold. First, the
computation of the orthogonal integrals relative to computation of
the line integrals is more burdensome. There is also additional



Progress In Electromagnetics Research, PIER 53, 2005 267

computational time in the evaluation of the sheet currents relative to
the evaluation of the line currents. However, for large domains, these
computational burdens are insignificant relative to the computation
of general FDTD equations. Second, there is additional complexity
incorporated into the otherwise simple FDTD code. This complexity
is found in the electrostatic pre-solver. Nonetheless, if such complexity
is needed to devise a methodology that unambiguously characterizes
the DUI, then we believe the extra effort is justified.

In this paper we have focussed on the TEM mode of a two-
conductor waveguide. There appears, however, to be no compelling
reason why the method could not be extended to include single
conductor, closed waveguides that only support TE or TM modes. For
these situations the modal coefficients would be frequency-dependent,
which adds a convolution [19] operation to the time-domain algorithm.
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